Advertisement

Physics of the Solid State

, Volume 57, Issue 2, pp 353–359 | Cite as

Relaxation mechanism of plastic deformation and its justification using the example of the sharp yield point phenomenon in whiskers

  • Yu. V. Petrov
  • E. N. Borodin
Mechanical Properties, Physics of Strength, and Plasticity

Abstract

The generality of the dynamic approach to a wide range of problems of the continuum mechanics, including deformation at the rates determining quasi-static deformation conditions has been demonstrated using the example of deformation of cadmium and copper whiskers. The sharp yield point phenomenon has been analyzed in terms of the theory of dislocations and phenomenological integrated criteria of plasticity. It has been shown that the characteristic relaxation times used in these criteria, regardless of the applied model of plasticity, reflect essential properties of the very deformation process itself.

Keywords

Dislocation Density Relaxation Mechanism Characteristic Relaxation Time Plastic Relaxation Initial Dislocation Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, New York, 2009).zbMATHGoogle Scholar
  2. 2.
    V. S. Krasnikov, A. E. Mayer, and A. P. Yalovets, Int. J. Plast. 27, 1294 (2011).CrossRefzbMATHGoogle Scholar
  3. 3.
    G. V. Berezhkova, Whiskers (Nauka, Moscow, 1969) [in Russian].Google Scholar
  4. 4.
    J. R. Greer and J. Th. M. De Hosson, Prog. Mater. Sci. 56, 654 (2001).CrossRefGoogle Scholar
  5. 5.
    B. V. Petukhov, Tech. Phys. 46(11), 1389 (2001).CrossRefGoogle Scholar
  6. 6.
    E. N. Borodin and A. E. Mayer, Mater. Sci. Eng., A 532, 245 (2012).CrossRefGoogle Scholar
  7. 7.
    E. N. Borodin, A. E. Mayer, Yu. V. Petrov, and A. A. Gruzdkov, Phys. Solid State 56(12), 2470 (2014).CrossRefADSGoogle Scholar
  8. 8.
    A. E. Mayer, K. V. Khishchenko, P. R. Levashov, and P. N. Mayer, J. Appl. Phys. 113, 193508 (2013).CrossRefADSGoogle Scholar
  9. 9.
    A. E. Dudorov and A. E. Maier, Vestn. Chelyab. Gos. Univ., No. 39 (254), 48 (2011).Google Scholar
  10. 10.
    G. A. Malygin, Phys.—Usp. 42(9), 887 (1999).CrossRefADSGoogle Scholar
  11. 11.
    D. McLean, Mechanical Properties of Metals (Wiley, New York, 1962; Metallurgiya, Moscow, 1965).Google Scholar
  12. 12.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Melikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).Google Scholar
  13. 13.
    S. S. Brenner, J. Appl. Phys. 28, 1023 (1957).CrossRefADSGoogle Scholar
  14. 14.
    R. V. Coleman, P. B. Price, and N. Cabrera, J. Appl. Phys. 28, 1360 (1957).ADSGoogle Scholar
  15. 15.
    A. A. Gruzdkov and Yu. V. Petrov, Dokl. Phys. 44(2), 114 (1999).ADSGoogle Scholar
  16. 16.
    A. A. Gruzdkov, Yu. V. Petrov, and V. I. Smirnov, Phys. Solid State 44(1), 62 (2002).Google Scholar
  17. 17.
    A. A. Gruzdkov, E. V. Sitnikova, N. F. Morozov, and Y. V. Petrov, Math. Mech. Solids 14, 72 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    M. M. Hutchison, J. Iron Steel Inst. 186, 431 (1957).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint Petersburg State UniversitySt. PetersburgRussia
  3. 3.Chelyabinsk State UniversityChelyabinskRussia

Personalised recommendations