Physics of the Solid State

, Volume 57, Issue 2, pp 266–269 | Cite as

Crystallization of amorphous Zr-Be alloys

  • E. A. Golovkova
  • A. V. Surkov
  • G. F. Syrykh


The thermal stability and structure of binary amorphous Zr100 − x Be x alloys have been studied using differential scanning calorimetry and neutron diffraction over a wide concentration range (30 ≤ x ≤ 65). The amorphous alloys have been prepared by rapid quenching from melt. The studied amorphous system involves the composition range around the eutectic composition with boundary phases α-Zr and ZrBe2. It has been found that the crystallization of alloys with low beryllium contents (“hypoeutectic” alloys with x ≤ 40) proceeds in two stages. Neutron diffraction has demonstrated that, at the first stage, α-Zr crystallizes and the remaining amorphous phase is enriched to the eutectic composition; at the second stage, the alloy crystallizes in the α-Zr and ZrBe2 phases. At higher beryllium contents (“hypereutectic” alloys), one phase transition of the amorphous phase to a mixture of the α-Zr and ZrBe2 phases has been observed. The concentration dependences of the crystallization temperature and activation energy have been revealed.


Amorphous Phase Beryllium Neutron Diffraction Amorphous Alloy Eutectic Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Bratkovskii, S. L. Isakov, S. N. Ishmaev, I. P. Sadikov, A. V. Smirnov, G. F. Syrykh, M. N. Khlopkin, and N. A. Chernoplekov, Sov. Phys. JETP 73(4), 772 (1991).Google Scholar
  2. 2.
    M. Maret, C. N. J. Wagner, G. Etherington, A. Soper, and L. E. Tanner, J. Phys. (Paris) 47, 863 (1986).CrossRefGoogle Scholar
  3. 3.
    G. F. Syrykh, A. S. Ivanov, N. A. Klimenko, Yu. V. Lisichkin, H. Mutka, and J. A. Stride, J. Phys.: Condens. Matter 20, 104241 (2008).ADSGoogle Scholar
  4. 4.
    G. F. Syrykh, N. V. Situkha, N. A. Klimenko, and J. A. Stride, J. Surf. Invest. 5(3), 409 (2011).CrossRefGoogle Scholar
  5. 5.
    J. Amato, F. Baudrocco, and M. Ravizza, Welding J. 51, 341 (1972).Google Scholar
  6. 6.
    C. H. Park, Y. S. Han, Y. K. Kim, K. J. Jang, J. Y. Lee, C. B. Choi, and K. S. Sim, J. Nucl. Mater. 254, 34 (1998).CrossRefADSGoogle Scholar
  7. 7.
    M. Vatsuura, Solid State Commun. 30, 231 (1979).CrossRefADSGoogle Scholar
  8. 8.
    E. Jakubszyk, Z. Mandecki, and M. Jakubczyk, J. Non-Cryst. Solids 232–234, 453 (1998).CrossRefGoogle Scholar
  9. 9.
    H. E. Kissinger, Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
  10. 10.
    M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, 1958; Metallurgizdat, Moscow, 1962), p. 324.Google Scholar
  11. 11.
    U. Koster and P. Weiss, J. Non-Cryst. Solids 17, 359 (1975).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. A. Golovkova
    • 1
  • A. V. Surkov
    • 1
  • G. F. Syrykh
    • 1
  1. 1.National Research Centre “Kurchatov Institute,”MoscowRussia

Personalised recommendations