Skip to main content
Log in

Ab initio theory of many-body interaction and phonon frequencies of rare-gas crystals under pressure in the model of deformable atoms

  • Lattice Dynamics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Ab initio calculations of phonon frequencies of compressed rare-gas crystals have been performed taking into account the many-body interaction in the model of deformable atoms. In the short-range repulsive potential, along with the previously considered three-body interaction associated with the overlap of the electron shells of atoms, the three-body forces generated by the mutual deformation of the electron shells of the nearest-neighbor atoms have been investigated in the dipole approximation. The relevant forces make no contribution to the elastic moduli but affect the equation for lattice vibrations. At high compressions, the softening of the longitudinal mode at the points L and X is observed for all the rare-gas crystals, whereas the transverse mode T 1 is softened in the direction Σ and at the point L for solid xenon. This effect is enhanced by the three-body forces. There is a good agreement between the theoretical phonon frequencies and the experimental values at zero pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Krish, J. Raman Spectrosc. 34, 628 (2003).

    Article  ADS  Google Scholar 

  2. A. F. Prikhot’ko, V. G. Manzhelii, I. Ya. Fugol’, Yu. B. Gaididei, I. N. Krupskii, V. M. Loktev, E. V. Savchenko, V. A. Slyusarev, M. A. Strzhemechnyi, Yu. A. Freiman, and L. I. Shanskii, Cryocrystals (Naukova Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  3. R. A. Aziz and M. J. Slaman, Mol. Phys. 57, 825 (1985).

    Article  ADS  Google Scholar 

  4. R. A. Aziz and M. J. Slaman, Mol. Phys. 58, 679 (1986).

    Article  ADS  Google Scholar 

  5. R. A. Aziz and M. J. Slaman, Chem. Phys. 130, 187 (1989).

    Article  ADS  Google Scholar 

  6. P. Schwerdtfeger, N. Gaston, R. P. Krawczyk, R. Tonner, and G. E. Moyano, Phys. Rev. B: Condens. Matter 73, 064112 (2006).

    Article  ADS  Google Scholar 

  7. D. Acocella, G. K. Horton, and E. R. Cowley, Phys. Rev. B: Condens. Matter 61, 8753 (2000).

    Article  ADS  Google Scholar 

  8. P. Loubeyre, Phys. Rev. B: Condens. Matter 37, 5432 (1988).

    Article  ADS  Google Scholar 

  9. I. Kwon, L. A. Collins, J. D. Kress, and N. Troullier, Phys. Rev. B: Condens. Matter 52, 15165 (1995).

    Article  ADS  Google Scholar 

  10. Yu. A. Freiman and S. M. Tretyak, Low Temp. Phys. 33(6), 545 (2007).

    Article  ADS  Google Scholar 

  11. T. Tsuchiya and K. Kawamura, J. Chem. Phys. 117, 5859 (2002).

    Article  ADS  Google Scholar 

  12. E. Pechenic, I. Kelson, and G. Makov, Phys. Rev. B: Condens. Matter 78, 134109, (2008).

    Article  ADS  Google Scholar 

  13. M. Aoki and T. Kurokawa, J. Phys.: Condens. Matter 19, 236228 (2007).

    ADS  Google Scholar 

  14. T. Iitaka and T. Ebisuzaki, Phys. Rev. B: Condens. Matter 65, 012103 (2001).

    Article  ADS  Google Scholar 

  15. F. Occelli, M. Krisch, P. Loubeyre, F. Sette, R. Le Toullec, C. Masciovecchio, and J.-P. Rueff, Phys. Rev. B: Condens. Matter 63, 224306 (2001).

    Article  ADS  Google Scholar 

  16. P. Hohenberg and W. Kohn. Phys. Rev. [Sect.] B 136, 864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  17. W. Kohn and L. J. Sham. Phys. Rev. Sect. A 140, 1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  18. W. A. Caldwell, J. H. Nguyen, B. G. Pfrommer, F. Mauri, S. G. Louie, and R. Jeanloz, Science (Washington) 277, 930 (1997).

    Article  Google Scholar 

  19. M. Springbord, J. Phys.: Condens. Matter 12, 9869 (2000).

    ADS  Google Scholar 

  20. J. K. Dewhurst, R. Ahuja, S. Li, and B. Johansson, Phys. Rev. Lett. 88, 075504 (2002).

    Article  ADS  Google Scholar 

  21. W. Kohn, Y. Meir, and D. E. Makarov, Phys. Rev. Lett. 80, 4153 (1998).

    Article  ADS  Google Scholar 

  22. S. Sasaki, N. Wada, T. Kumi, and H. Shimizu, J. Raman Spectrosc. 40, 121 (2009).

    Article  ADS  Google Scholar 

  23. K. B. Tolpygo, Zh. Eksp. Teor. Fiz. 20, 497 (1950); K. B. Tolpygo, Ukr. Fiz. Zh. 4, 72 (1959).

    Google Scholar 

  24. K. B. Tolpygo, Sov. Phys. Solid State 3, 685 (1961).

    Google Scholar 

  25. K. B. Tolpygo and E. P. Troitskaya, Sov. Phys. Solid State 13(4), 939 (1971).

    Google Scholar 

  26. E. P. Troitskaya, V. V. Chabanenko, and E. E. Horbenko, Phys. Solid State 47(9), 1748 (2005).

    Article  ADS  Google Scholar 

  27. E. P. Troitskaya, V. V. Chabanenko, and E. E. Horbenko, Phys. Solid State 48(4), 741 (2006).

    Article  ADS  Google Scholar 

  28. E. P. Troitskaya, V. V. Chabanenko, and Ie. Ie. Horbenko, Phys. Solid State 49(11), 2154 (2007).

    Article  ADS  Google Scholar 

  29. E. P. Troitskaya, Val. V. Chabanenko, I. V. Zhikharev, and Ie. Ie. Gorbenko, Phys. Solid State 53(8), 1634 (2011).

    Article  Google Scholar 

  30. E. P. Troitskaya, Val. V. Chabanenko, I. V. Zhikharev, Ie. Ie. Gorbenko, and E. A. Pilipenko, Phys. Solid State 54(6), 1254 (2012).

    Article  ADS  Google Scholar 

  31. E. P. Troitskaya, Val. V. Chabanenko, I. V. Zhikharev, Ie. Ie. Gorbenko, and E. A. Pilipenko, Phys. Solid State 55(2), 389 (2013).

    Article  ADS  Google Scholar 

  32. E. P. Troitskaya, Val. V. Chabanenko, E. A. Pilipenko, I. V. Zhikharev, and Ie. Ie. Gorbenko, Phys. Solid State 55(11), 2335 (2013).

    Article  ADS  Google Scholar 

  33. K. B. Tolpygo and E. P. Troitskaya, Ukr. Fiz. Zh. 19, 428 (1974).

    Google Scholar 

  34. M. A. Belogolovskii, K. B. Tolpygo, and E. P. Troitskaya, Sov. Phys. Solid State 13(7), 1765 (1971).

    Google Scholar 

  35. I. G. Zaslavskaya and K. B. Tolpygo, Ukr. Fiz. Zh. 1, 226 (1956).

    Google Scholar 

  36. Ie. Ie. Gorbenko, Candidate’s Dissertation (Donetsk Institute for Physics and Engineering named after O.O. Galkin, National Academy of Sciences of Ukraine, Donetsk, 2008).

    Google Scholar 

  37. E. V. Zarochentsev, V. N. Varyukhin, E. P. Troitskaya, Val. V. Chabanenko, and E. E. Horbenko, Phys. Status Solidi B 243, 2672 (2006).

    Article  ADS  Google Scholar 

  38. G. E. Moyano, P. Schwerdtfeger, and K. Rosciszewski, Phys. Rev. B: Condens. Matter 75, 4101 (2007).

    Article  ADS  Google Scholar 

  39. J. A. Leake, W. B. Daniels, J. Skalyo, Jr., B. C. Frazer, and G. Shirane, Phys. Rev. 181, 1251 (1969).

    Article  ADS  Google Scholar 

  40. J. Skalyo, V. J. Minkiewcz, G. Shirane, and W. B. Daniels, Phys. Rev. B: Solid State 6, 4766 (1972).

    Article  ADS  Google Scholar 

  41. Y. Endoh, G. Shirane, and J. Skalyo, Phys. Rev. B: Solid State 11, 1681 (1975).

    Article  ADS  Google Scholar 

  42. Y. Fujii, N. A. Lurie, R. Pynn, G. Shirane, and W. P. Daniels, Phys. Rev. B: Solid State 10, 3647 (1974).

    Article  ADS  Google Scholar 

  43. J. Skalyo, Y. Endoh, and G. Shirane, Phys. Rev. B: Solid State 9, 1797 (1974).

    Article  ADS  Google Scholar 

  44. N. A. Lurie, G. Shirane, and J. Skalyo, Jr., Phys. Rev. B: Solid State 9, 5300 (1974).

    Article  ADS  Google Scholar 

  45. H. S. Shimizu, H. Tashiro, and S. Sasaki, Phys. Rev. Lett. 86(20), 4568 (2001).

    Article  ADS  Google Scholar 

  46. E. V. Zarochentsev and E. P. Troitskaya, Phys. Solid State 43(7), 1345 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Pilipenko.

Additional information

Original Russian Text © E.P. Troitskaya, V.V. Chabanenko, Ie.Ie. Gorbenko, E.A. Pilipenko, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 1, pp. 114–123.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troitskaya, E.P., Chabanenko, V.V., Gorbenko, I.I. et al. Ab initio theory of many-body interaction and phonon frequencies of rare-gas crystals under pressure in the model of deformable atoms. Phys. Solid State 57, 119–130 (2015). https://doi.org/10.1134/S1063783415010321

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415010321

Keywords

Navigation