Skip to main content
Log in

Effect of the nonstoichiometry of tantalum carbide TaC y on the particle size of nanopowders prepared by milling

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of the nonstoichiometry of tantalum carbide TaC y on the size of particles in nanocrystalline powders prepared by milling has been investigated experimentally for the first time. It has been shown that the effect of the nonstoichiometry on the milling manifests itself in the concentration dependences of the parameters of the crystal structure, energy of interatomic bonds, and elastic properties of the milled nonstoichiometric compound. The experimental data on milling of the tantalum carbide TaC y (0.81 ≤ y ≤ 0.96) have been compared with the theoretical dependences of the particle size D of nanopowders on the milling time t and the composition y of the nonstoichiometric cubic carbides TaC y . It has been established that, under otherwise equal conditions, the milling for 15 h makes it possible to obtain carbide powders with an average particle size of ∼20 nm and a specific surface area of 25 m2 g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides, and Oxides (Springer-Verlag, Berlin, 2001).

    Book  Google Scholar 

  2. A. I. Gusev and A. A. Rempel’, Nonstoichiometry, Disorder and Order in Solids (Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2001) [in Russian].

    Google Scholar 

  3. E. Rudy and D. P. Harmon, in Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems, Part I: Related Binary Systems (Metals and Ceramics Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, 1965), Vol. V, Technical Report AFML-TR-65-2, p. 1.

  4. E. K. Storms, in Phase Equilibria Diagrams: Phase Diagrams for Ceramists, Ed. by A. E. McHale (American Ceramic Society, Westerville, Ohio, 1994), Vol. X, p. 265.

  5. A. I. Gusev and A. A. Rempel, Phys. Status Solidi A 163(2), 273 (1997).

    Article  ADS  Google Scholar 

  6. A. I. Gusev and A. A. Rempel, in Materials Science of Carbides, Nitrides, and Borides, Ed. by Y. G. Gogotsi and R. A. Andrievski (Kluwer, Dordrecht, 1999), p. 47.

  7. L. Ramqvist, Jernkontorets Ann. 152(9), 467 (1968).

    Google Scholar 

  8. A. S. Kurlov and A. I. Gusev, Tungsten. Carbides: Structure, Properties, and Application in Hardmetals (Springer-Verlag, Cham, 2013).

    Book  Google Scholar 

  9. M. Kirihara, J. Yamamoto, T. Noguchi, and Y. Hirai, Tetrahedron Lett. 50(10), 1180 (2009).

    Article  Google Scholar 

  10. M. Kirihara, J. Yamamoto, T. Noguchi, A. Itou, S. Naito, and Y. Hirai, Tetrahedron 65(50), 10477 (2009).

    Article  Google Scholar 

  11. M. Kirihara, A. Itou, T. Noguchi, and J. Yamamoto, Synlett 21(10), 1557 (2010).

    Article  Google Scholar 

  12. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge International Science, Cambridge, 2004).

    Google Scholar 

  13. A. S. Kurlov and A. I. Gusev, Tech. Phys. Lett 33(10), 828 (2007).

    Article  ADS  Google Scholar 

  14. A. I. Gusev and A. S. Kurlov, Nanotechnology 19(26), 265302 (2008).

    Article  ADS  Google Scholar 

  15. A. I. Gusev and A. S. Kurlov, Inorg. Mater. 45(1), 35 (2009).

    Article  Google Scholar 

  16. A. S. Kurlov and A. I. Gusev, in 17 Plansee Seminar 2009: Proceedings of the International Conference on High Performance P/M Materials, Ed. by L. S. Sigl, P. Rödhammer, and H. Wildner (Plansee Group, Reutte, Austria, 2009), Vol. 3, p. GT24/1.

  17. A. S. Kurlov and A. I. Gusev, Tech. Phys. 56(7), 975 (2011).

    Article  Google Scholar 

  18. A. S. Kurlov and A. I. Gusev, Phys. Solid State 55(12), 2522 (2013).

    Article  ADS  Google Scholar 

  19. A. S. Kurlov and A. I. Gusev, J. Alloys Compd. 582, 108 (2014).

    Article  Google Scholar 

  20. A. A. Rempel and A. I. Gusev, Phys. Solid State 42(7), 1280 (2000).

    Article  ADS  Google Scholar 

  21. X’Pert Plus, Version 1.0: Program for Crystallography and Rietveld Analysis (Philips Analytical, Amsterdam).

  22. A. S. Kurlov and A. I. Gusev, Glass Phys. Chem. 33(3), 276 (2007).

    Article  Google Scholar 

  23. A. I. Gusev and A. S. Kurlov, Metallofiz. Noveishie Tekhnol. 30(5), 679 (2008).

    Google Scholar 

  24. G. K. Williamson and R. E. Smallman, Philos. Mag. (Ser. 8) 1(1), 34 (1956).

    Article  ADS  Google Scholar 

  25. M. Born, Verh. Dtsch. Phys. Ges. 21(1/2), 13 (1919).

    Google Scholar 

  26. F. Haber, Verh. Dtsch. Phys. Ges. 21, 750 (1919).

    Google Scholar 

  27. V. N. Lipatnikov, A. A. Rempel’, and A. I. Gusev, Izv. Akad. Nauk SSSR, Neorg. Mater. 26(12), 2522 (1990).

    Google Scholar 

  28. D. J. Rowcliffe and G. E. Hollox, Mater. Sci. 6(10), 1270 (1971).

    Article  ADS  Google Scholar 

  29. C. K. Jun and P. T. B. Shaffer, J. Less-Common Met. 23(4), 367 (1971).

    Article  Google Scholar 

  30. H. L. Brown, P. E. Armstrong, and C. P. Kempter, J. Chem. Phys. 45(2), 547 (1966).

    Article  ADS  Google Scholar 

  31. R. W. Bartlett and C. W. Smith, J. Appl. Phys. 38(13), 5428 (1967).

    Article  ADS  Google Scholar 

  32. V. I. Knyazev, G. A. Rymashevskii, V. S. Belov, and V. M. Shchavelin, in Methods of Investigation of Refractory Materials, Ed. by Yu. V. Miloserdin (Atomizdat, Moscow, 1970), p. 35 [in Russian].

  33. V. G. Bukatov, O. S. Korostin, and V. I. Knyazev, Izv. Akad. Nauk SSSR, Neorg. Mater. 11(2), 370 (1975).

    Google Scholar 

  34. V. G. Bukatov, V. I. Knyazev, O. S. Korostin, and V. M. Baranov, Carbides and Their Alloys (Naukova Dumka, Kiev, 1976), p. 111 [in Russian].

    Google Scholar 

  35. S. P. Dodd, M. Cankurtaran, and B. James, J. Mater. Sci. 38(6), 1107 (2003).

    Article  ADS  Google Scholar 

  36. L. López-de-la-Torre, B. Winkler, J. Schreuer, K. Knorr, and M. Avalos-Borja, Solid State Commun. 134(4), 245 (2005).

    Article  ADS  Google Scholar 

  37. X.-G. Lu, M. Selleby, and B. Sundman, Acta Mater. 55, 1215 (2007).

    Article  Google Scholar 

  38. F. Peng, L. Han, H. Fu, and X. Cheng, Phys. Status Solidi B 246(7), 1590 (2009).

    Article  ADS  Google Scholar 

  39. A. I. Dedyurin, L. I. Gomozov, and O. S. Ivanov, in Alloys for Nuclear Power Industry, Ed. by O. S. Ivanov (Nauka, Moscow, 1979), p. 160 [in Russian].

  40. V. I. Tumanov, S. I. Yudkovskii, and V. V. Chernyshev, Metally 4, 212 (1968).

    Google Scholar 

  41. H. A. Johansen and J. G. Clearly, J. Electrochem. Soc. 113(4), 378 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kurlov.

Additional information

Original Russian Text © A.S. Kurlov, A.M. Bel’kov, T.D. Vyrodova, A.I. Gusev, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 1, pp. 66–74.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurlov, A.S., Bel’kov, A.M., Vyrodova, T.D. et al. Effect of the nonstoichiometry of tantalum carbide TaC y on the particle size of nanopowders prepared by milling. Phys. Solid State 57, 70–78 (2015). https://doi.org/10.1134/S1063783415010175

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415010175

Keywords

Navigation