Skip to main content
Log in

Electromagnetic properties of phosphate composite materials with boron-containing carbon nanotubes

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The possibility of developing electromagnetic composite materials based on unfired heat-resistant mechanically strong phosphate ceramics has been studied. Boron-containing multiwalled carbon nanotubes and onion-like particles (B-MWCNTs) synthesized by electric-arc evaporation of a graphite rod enriched with boron are used as a functional additive to the phosphate matrix. According to transmission electron microscopy, the average nanoparticle length is ∼100 nm. According to X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, the boron content in B-MWCNT walls is less than 1 at %, and substitution of carbon atoms with boron leads to the formation of acceptor states in the conduction band. An increase in the electromagnetic response of phosphate ceramics by ∼53 and ∼13–15% for 1.5 wt % B-MWCNT additive is detected in quasi-static and gigahertz ranges, respectively. It is assumed that a stronger effect can be achieved using longer B-MWCNTs than those formed under electric arc conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Hanson, IEEE Trans. Antennas Propag. 53, 3426 (2005).

    Article  ADS  Google Scholar 

  2. P. J. Burke, S. Li, and Z. Yu, IEEE Trans. Nanotechnol. 5, 314 (2006).

    Article  ADS  Google Scholar 

  3. F. Qin and C. Brosseau, J. Appl. Phys. 111, 061301 (2012).

    Article  ADS  Google Scholar 

  4. U. Dettlaff-Weglikowska, V. Skakalova, J. Meyer, J. Cech, B. G. Mueller, and S. Roth, Curr. Appl. Phys. 7, 42 (2007).

    Article  ADS  Google Scholar 

  5. R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Ruhle, and D. L. Carroll, Nano Lett. 1, 457 (2001).

    Article  ADS  Google Scholar 

  6. C. P. Ewels and M. Glerup, J. Nanosci. Nanotechnol. 5, 1345 (2005).

    Article  Google Scholar 

  7. F. Villalpando-Paez, A. Zamudio, A. L. Elias, H. Son, E. B. Barros, S. G. Chou, Y. A. Kim, H. Muramatsu, T. Hayashi, J. Kong, H. Terrones, G. Dresselhaus, M. Endo, M. Terrones, and M. S. Dresselhaus, Chem. Phys. Lett. 424, 345 (2006).

    Article  ADS  Google Scholar 

  8. Z. R. Ismagilov, A. E. Shalagina, O. Yu. Podyacheva, A. V. Ischenko, L. S. Kibis, A. I. Boronin, Yu. A. Chesalov, D. I. Kochubey, A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov, and E. N. Tkachev, Carbon 47, 1922 (2009).

    Article  Google Scholar 

  9. A. M. Nemilentsau, M. V. Shuba, G. Ya. Slepyan, P. P. Kuzhir, S. A. Maksimenko, P. N. D’yachkov, and A. Lakhtakia, Phys. Rev. B: Condens. Matter 82, 235424 (2010).

    Article  ADS  Google Scholar 

  10. E. Xu, J. Wei, K. Wang, Z. Li, X. Gui, Yi Jia, H. Zhu, and D. Wu, Carbon 48, 3097 (2010).

    Article  Google Scholar 

  11. S. Latil, S. Roche, D. Mayou, and J.-C. Charlier, J. Nanosci. Nanotechnology 5, 1345 (2005).

    Article  Google Scholar 

  12. W. I. Choi, S. Park, T. E. Kim, N. Park, K. R. Lee, Y. H. Lee, J. Ihm, and S. Han, Nanotechnology 17, 5862 (2006).

    Article  ADS  Google Scholar 

  13. G. Y. Guo, K. C. Chu, D.-S. Wang, and C.-G. Duan, Phys. Rev. B: Condens. Matter 69, 205416 (2004).

    Article  ADS  Google Scholar 

  14. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London) 391, 59 (1998).

    Article  ADS  Google Scholar 

  15. L. H. Chan, K. H. Hong, D. Q. Xiao, T. C. Lin, S. H. Lai, W. J. Hsieh, and H. C. Shih, Phys. Rev. B: Condens. Matter 70, 125408 (2004).

    Article  ADS  Google Scholar 

  16. H. Pan, Y. P. Feng, and J. Lin, Phys. Rev. B: Condens. Matter 74, 045409 (2006).

    Article  ADS  Google Scholar 

  17. D. Schultz, R. Droppa, Jr., F. Alvarez, and M. C. dos Santos, Phys. Rev. Lett. 90, 015501 (2003).

    Article  ADS  Google Scholar 

  18. L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, Inorg. Chim. Acta 363, 4163 (2010).

    Article  Google Scholar 

  19. D. Jana, C.-L. Sun, L.-C. Chen, and K.-H. Chen, Prog. Mater. Sci. 58, 565 (2013).

    Article  Google Scholar 

  20. K. C. Mondal, A. M. Strydom, R. M. Erasmus, J. M. Keartland, and N. J. Coville, Mater. Chem. Phys. 111, 386 (2008).

    Article  Google Scholar 

  21. A. A. Koos, F. Dillon, E. A. Obraztsova, A. Crossley, and N. Grobert, Carbon 48, 3033 (2010).

    Article  Google Scholar 

  22. D. S. Bychanok, M. V. Shuba, P. P. Kuzhir, S. A. Maksimenko, V. V. Kubarev, M. A. Kanygin, O. V. Sedelnikova, L. G. Bulusheva, and A. V. Okotrub, J. Appl. Phys. 114, 114304 (2013).

    Article  ADS  Google Scholar 

  23. L. G. Sudakas, Phosphate Astringent Systems (RIA Kvintet, St. Petersburg, 2008) [in Russian].

  24. V. A. Korpus’, Z. F. Krylova, L. I. Dorozhkina, V. F. Tikavyi, I. A. Zakharov, and G. A. Shevergina, RF Patent No. 2 035 432.

  25. Z. F. Krylova, L. I. Dorozhkina, I. A. Zakharov, A. E. Bazarova, V. A. Korpus’, and V. F. Tikavyi, RF Patent No. 2 066 335.

  26. A. V. Okotrub, Yu. V. Shevtsov, L. I. Nasonova, D. E. Sinyakov, A. L. Chuvilin, A. K. Gutakovskii, and L. N. Mazalov, Inorg. Mater. 32(8), 858 (1996).

    Google Scholar 

  27. A. V. Okotrub, L. G. Bulusheva, A. I. Romanenko, A. L. Chuvilin, N. A. Rudina, Y. V. Shubin, N. F. Yudanov, and A. V. Gusel’nikov, Appl. Phys. A 72, 481 (2001).

    Article  ADS  Google Scholar 

  28. C. Pallier, G. Chollon, P. Weisbecker, F. Teyssandier, C. Gervais, and F. Sirotti, Surf. Coat. Technol. 215, 178 (2013).

    Article  Google Scholar 

  29. C. W. Ong, H. Huang, B. Zheng, R. W. M. Kwok, Y. Y. Hui, and W. M. Lau, J. Appl. Phys. 95, 3527 (2004).

    Article  ADS  Google Scholar 

  30. B.-K. Chung, Prog. Electromagn. Res. 75, 239 (2007).

    Article  ADS  Google Scholar 

  31. L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Material at Microwave Frequencies (Wiley, Chichester, United Kingdom, 2004).

    Book  Google Scholar 

  32. O. V. Sedel’nikova, L. G. Bulusheva, and A. V. Okotrub, Phys. Solid State 51(4), 863 (2009).

    Article  ADS  Google Scholar 

  33. O. V. Sedelnikova, N. N. Gavrilov, L. G. Bulusheva, and A. V. Okotrub, J. Nanoelectron. Optoelectron. 4, 267 (2009).

    Article  Google Scholar 

  34. M. V. Shuba, G. Ya. Slepyan, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, Phys. Rev. B: Condens. Matter 79, 155403 (2009).

    Article  ADS  Google Scholar 

  35. M. A. Kanygin, O. V. Sedelnikova, I. P. Asanova, L. G. Bulusheva, A. V. Okotrub, P. P. Kuzhir, A. O. Plyushch, S. A. Maksimenko, K. N. Lapko, A. A. Sokol, O. A. Ivashkevich, and Ph. Lambin, J. Appl. Phys. 113, 144315 (2013).

    Article  ADS  Google Scholar 

  36. A. E. Craft and J. C. King, Nucl. Technol. 172, 255 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Plyushch.

Additional information

Original Russian Text © A.O. Plyushch, A.A. Sokol, K.N. Lapko, P.P. Kuzhir, Yu.V. Fedoseeva, A.I. Romanenko, O.B. Anikeeva, L.G. Bulusheva, A.V. Okotrub, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 12, pp. 2446–2451.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plyushch, A.O., Sokol, A.A., Lapko, K.N. et al. Electromagnetic properties of phosphate composite materials with boron-containing carbon nanotubes. Phys. Solid State 56, 2537–2542 (2014). https://doi.org/10.1134/S1063783414120257

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414120257

Keywords

Navigation