Skip to main content
Log in

Electrical conductivity and polymorphic transition of titanium in the megabar shock pressure range

  • Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of high dynamic pressures on the electrical resistance of titanium has been studied. The electrical resistance of titanium samples has been measured under conditions of step shock compression followed by unloading. The history of shock-wave loading of titanium has been calculated using the semiempirical equations of state. It has been shown that, in the phase of compression at a pressure of 83(5) GPa, the resistance of titanium samples stepwise decreases by 30%. In the unloading phase in the same region of dynamic loads, the reverse variation in the electrical resistance of titanium takes place. The observed effect is interpreted as a consequence of the ω ↔ γ polymorphic transition in shock-compressed titanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Trunin, M. V. Zhernokletov, N. F. Kuznetsov, and Yu. N. Sutulov, Fiz. Zemli, No. 11, 65 (1987).

    Google Scholar 

  2. D. Machon, M. Daniel, V. Pischedda, S. Daniele, P. Bouvier, and S. LeFloch, Phys. Rev. B: Condens. Matter 82, 140102(R) (2010).

    Article  ADS  Google Scholar 

  3. A. M. Molodets, A. A. Golyshev, and Yu. M. Shul’ga, Tech. Phys. 58(7), 1029 (2013).

    Article  Google Scholar 

  4. V. M. Bystritsky, Vit. M. Bystritskii, G. N. Dudkin, M. Filipowicz, S. Gazi, J. Huran, G. A. Mesyats, B. A. Nechaev, V. N. Padalko, S. S. Parzhitskii, F. M. Pen’kov, A. V. Philippov, and Yu. Zh. Tuleushev, JETP Lett. 99(9), 497 (2014).

    Article  ADS  Google Scholar 

  5. N. Velisavljevic, S. MacLeod, and H. Cynn, in Titanium Alloys: Towards Achieving Enhanced Properties for Diversified Applications, Ed. by Dr. A. K. M. Nurul Amin (InTech, Rijeka, Croatia, 2012), p. 67. http://www.intechopen.com/books/titanium-alloystowardsachieving-enhanced-properties-for-diversifiedapplications/.

  6. Y. K. Vohra and P. T. Spencer, Phys. Rev. Lett. 86, 3068 (2001).

    Article  ADS  Google Scholar 

  7. Y. Akahama, H. Kawamura, and T. Le Bihan, Phys. Rev. Lett. 87, 275503 (2001).

    Article  ADS  Google Scholar 

  8. D. Errandonea, Y. Meng, M. Somayazulu, and D. Häusermann, Physica B (Amsterdam) 355, 116 (2005).

    Article  ADS  Google Scholar 

  9. J. Zhang, Y. Zhao, R. S. Hixson, G. T. Gray III, L. Wang, W. Utsumi, S. Hiroyuki, and H. Takanori, J. Phys. Chem. Solids 69, 2559 (2008).

    Article  ADS  Google Scholar 

  10. R. F. Trunin, L. A. Il’kaeva, M. A. Podurets, L. V. Popov, B. V. Pechenkin, L. V. Prokhorov, A. G. Sevast’yanov, and V. V. Khrustalev, Teplofiz. Vys. Temp. 32, 692 (1994).

    Google Scholar 

  11. R. F. Trunin, N. V. Panov, and A. B. Medvedev, JETP Lett. 62(7), 591 (1995).

    ADS  Google Scholar 

  12. R. F. Trunin, G. V. Simakov, and A. B. Medvedev, Teplofiz. Vys. Temp. 37, 881 (1999).

    Google Scholar 

  13. E. Cerreta, G. T. Gray III, A. C. Lawson, T. A. Mason, and C. E. Morris, J. Appl. Phys. 100, 013530 (2006).

    Article  ADS  Google Scholar 

  14. A. A. Brish, M. S. Tarasov, and V. A. Tsukerman, Sov. Phys. JETP 11(1), 15 (1960).

    Google Scholar 

  15. V. V. Yakushev, Combust., Explos. Shock Waves 14(2), 131 (1978).

    Article  Google Scholar 

  16. A. A. Golyshev and A. M. Molodets, Combust., Explos. Shock Waves 49(2), 219 (2013).

    Article  Google Scholar 

  17. S. Pecker, S. Eliezer, D. Fisher, and Z. Henis, J. Appl. Phys. 98, 043516 (2005).

    Article  ADS  Google Scholar 

  18. Zhi-Gang Mei, Shun-Li Shang, Yi Wang, and Zi-Kui Liu, Phys. Rev. B: Condens. Matter 80, 104116 (2009).

    Article  ADS  Google Scholar 

  19. LASL Shock Hugoniot Data, Ed. by S. P. Marsh (University of California Press, Berkeley, 1980).

    Google Scholar 

  20. C. W. Greeff, D. R. Trinkle, and R. C. Albers, J. Appl. Phys. 90, 2221 (2001).

    Article  ADS  Google Scholar 

  21. A. M. Molodets, D. V. Shakhrai, and V. E. Fortov, J. Exp. Theor. Phys. 118(6), 896 (2014).

    Article  ADS  Google Scholar 

  22. L. V. Al’tshuler, S. B. Kormer, A. A. Bakanova, and R. F. Trunin, Sov. Phys. JETP 11, 573 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Molodets.

Additional information

Original Russian Text © A.M. Molodets, A.A. Golyshev, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 12, pp. 2435–2439.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molodets, A.M., Golyshev, A.A. Electrical conductivity and polymorphic transition of titanium in the megabar shock pressure range. Phys. Solid State 56, 2524–2529 (2014). https://doi.org/10.1134/S1063783414120245

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414120245

Keywords

Navigation