Skip to main content
Log in

Fine features of the crystal structure of the semiconductor cubic single crystal Zn0.9V0.1Se

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Fine features of the crystal structure of the semiconductor cubic single crystal Zn0.9V0.1Se grown by the chemical transport method have been investigated using thermal neutron diffraction at room temperature. It has been revealed that the neutron diffraction scans of the single crystal, in addition to intense Bragg reflections of the face-centered cubic (fcc) phase, contain a complex system of superstructure reflections. Based on the sphalerite structure, it has been found for the first time that there are clear tendencies toward a decrease in the symmetry and a superposition of short-wavelength and long-wavelength modulations, which are interpreted as a consequence of the perturbations caused by doping vanadium ions and the cooperative response of the matrix lattice to these perturbations. The results of the performed experiment have been compared with the previously obtained data for the Zn0.9Ni0.1S crystal and interpreted as a manifestation of the pre-transition state to a reconstructive phase transition from the cubic phase to the hexagonal phase, which is accompanied by the aforementioned tendencies in the transformation of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Agekyan, Phys. Solid State 44(11), 2013 (2002).

    Article  ADS  Google Scholar 

  2. M. P. Shaskol’skaya, Crystallography (Vysshaya Shkola, Moscow, 1984) [in Russian].

    Google Scholar 

  3. Semiconductors and Semimetals, Vol. 25: Diluted Magnetic Semiconductors, Ed. By J. K. Furdyna and J. Kossut (Academic, San Diego, California, United States, 1988; Mir, Moscow, 1992).

    Google Scholar 

  4. V. I. Maksimov, S. F. Dubinin, and T. P. Surkova, Phys. Solid State 56(5), 912 (2014).

    Article  ADS  Google Scholar 

  5. V. I. Maksimov, S. F. Dubinin, and T. P. Surkova, Phys. Solid State 56(7), 1320 (2014).

    Article  ADS  Google Scholar 

  6. V. I. Maksimov, S. F. Dubinin, and V. I. Sokolov, Phys. Solid State 56(2), 242 (2014).

    Article  ADS  Google Scholar 

  7. V. I. Maksimov, S. F. Dubinin, T. P. Surkova, and A. V. Korolev, Phys. Solid State 55(10), 2027 (2013).

    Article  ADS  Google Scholar 

  8. T. P. Surkova, S. F. Dubinin, V. I. Maximov, and S. A. Lopez-Rivera, Phys. Status Solidi C 9(8–9), 1830 (2012).

    Article  ADS  Google Scholar 

  9. V. I. Maksimov, S. F. Dubinin, T. P. Surkova, and V. D. Parkhomenko, Crystallogr. Rep. 58(3), 468 (2013).

    Article  ADS  Google Scholar 

  10. T. P. Surkova, V. R. Galakhov, T. Schmitt, J. Nordgren, S. A. Lopez-Rivera, and V. M. Cherkashenko, in MAX-Lab Activity Report, Ed. by J. N. Andersson, U. Johansson, R. Nyholm, and H. Ullman (Lund University, Lund, Sweden, 2003), p. 234.

  11. V. I. Sokolov, S. F. Dubinin, V. V. Gudkov, and A. T. Lonchakov, Phys. Solid State 50(9), 1766 (2008).

    Article  ADS  Google Scholar 

  12. S. F. Dubinin, V. I. Sokolov, S. G. Teploukhov, V. D. Parkhomenko, V. V. Gudkov, A. T. Lonchakov, I. V. Zhevstovskikh, and N. B. Gruzdev, Phys. Solid State 48(12), 2275 (2006).

    Article  ADS  Google Scholar 

  13. V. I. Maksimov, S. F. Dubinin, V. I. Sokolov, and V. D. Parkhomenko, Phys. Solid State 54(7), 1336 (2012).

    Article  ADS  Google Scholar 

  14. Yu. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction of Magnetic Materials (Atomizdat, Moscow, 1981; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  15. S. F. Dubinin, V. I. Maksimov, V. D. Parkhomenko, V. I. Sokolov, A. N. Baranov, P. S. Sokolov, and Yu. A. Dorofeev, Phys. Solid State 53(7), 1362 (2011).

    Article  ADS  Google Scholar 

  16. V. I. Maksimov, S. F. Dubinin, A. N. Baranov, V. I. Sokolov, P. S. Sokolov, and V. D. Parkhomenko, Phys. Met. Metallogr. 114(9), 734 (2013).

    Article  ADS  Google Scholar 

  17. V. I. Maksimov, S. F. Dubinin, T. P. Surkova, and V. D. Parkhomenko, Phys. Solid State 54(9), 1747 (2012).

    Article  ADS  Google Scholar 

  18. S. F. Dubinin, V. G. Vologin, S. K. Sidorov, V. N. Syromyatnikov, and S. G. Teploukhov, Fiz. Met. Metalloved. 53(3), 465 (1982).

    Google Scholar 

  19. S. F. Dubinin, V. I. Sokolov, V. I. Maksimov, V. D. Parkhomenko, and V. A. Kazantsev, Phys. Solid State 52(8), 1593 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Maksimov.

Additional information

Original Russian Text © V.I. Maksimov, S.F. Dubinin, T.P. Surkova, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 12, pp. 2311–2318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, V.I., Dubinin, S.F. & Surkova, T.P. Fine features of the crystal structure of the semiconductor cubic single crystal Zn0.9V0.1Se. Phys. Solid State 56, 2393–2400 (2014). https://doi.org/10.1134/S1063783414120221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414120221

Keywords

Navigation