Skip to main content
Log in

Transmission of low-energy electrons through ultrathin layers of tin(IV) phthalocyanine oxide

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of the investigation of the transmission of low-energy electrons through 8-nm-thick films of tin(IV) phthalocyanine oxide (SnOPc) on the surface of the oxidized silicon substrate are presented. The procedure of detecting the reflection of testing low-energy electron beam from the surface was implemented using the very low-energy electron diffraction (VLEED) technique in the total current spectroscopy (TCS) mode with a change in the incident electron beam energy from 0 to 25 eV. The structure of maxima in the total current spectra of SnOPc films was established and the variation in intensities of the maxima of total current spectra emitted from the deposited SnOPc film and (SiO2)n-Si substrate during an increase in the thickness of the organic coating to 8 nm was analyzed. With such an increase in the thickness of the organic coating, the work function of the surface increases by 0.7 eV, which corresponds to the transfer of the electron density from the (SiO2)n-Si substrate to the SnOPc film. Optical absorption spectra of SnOPc films were measured. The absorption spectra were compared with the spectra measured by the TCS method for the SnOPc films and the films of molecules of oxygen-free metal phthalocyanine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Grzadziel, M. Krzywiecki, H. Peisert, T. Chassé, and J. Szuber, Org. Electron. 13(10), 1873 (2012).

    Article  Google Scholar 

  2. J. Ren, Sh. Meng, Y.-L. Wang, X.-C. Ma, Q.-K. Xue, and E. Kaxiras, J. Chem. Phys. 134, 194706 (2011).

    Article  ADS  Google Scholar 

  3. M. Marks, S. Sachs, C. H. Schwalb, A. Schöll, and U. Höfer, J. Chem. Phys. 139(12), 124701 (2013).

    Article  ADS  Google Scholar 

  4. J.L. Brédas and A. J. Heeger, Chem. Phys. Lett. 217, 507 (1994).

    Article  ADS  Google Scholar 

  5. S. Godlewski and M. Szymonski, Int. J. Mol. Sci. 14(2), 2946 (2013).

    Article  Google Scholar 

  6. A. S. Komolov, E. F. Lazneva, C. A. Pshenichnyuk, A. A. Gavrikov, N. S. Chepilko, A. A. Tomilov, N. B. Gerasimova, A. A. Lezov, and P. S. Repin, Semiconductors 47(7), 956 (2013).

    Article  ADS  Google Scholar 

  7. D. Song, F. Zhu, B. Yu, L. Huang, Y. Geng, and D. Yan, Appl. Phys. Lett. 92, 143303 (2008).

    Article  ADS  Google Scholar 

  8. F. Babudri, G. M. Farinola, F. Naso, and R. Ragni, Chem. Commun. (Cambridge) 10, 1003 (2007).

    Article  Google Scholar 

  9. S. Bubel, A. Ringk, P. Strohriegl, and R. Schmechel, Physica E (Amsterdam) 44(10), 2124 (2012).

    Article  ADS  Google Scholar 

  10. S. S. Karpova, V. A. Moshnikov, A. I. Maksimov, S. V. Myakin, and N. E. Kazantseva, Semiconductors 47(8), 1026 (2013).

    Article  ADS  Google Scholar 

  11. A. N. Aleshin, I. P. Shcherbakov, V. N. Petrov, and A. N. Titkov, Org. Electron. 12(8), 1285 (2011).

    Article  Google Scholar 

  12. F. Meng, X. Yan, Y. Zhu, and P. Si, Nanoscale Res. Lett. 8, 179 (2013).

    Article  ADS  Google Scholar 

  13. A. Modelli, D. Jones, and S. A. Pshenichnyuk, J. Phys. Chem. C 114, 1725 (2010).

    Article  Google Scholar 

  14. A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117(24), 12633 (2013).

    Article  Google Scholar 

  15. S. Qu, Y. Gao, and C. Zhao, Chem. Phys. Lett. 367, 767 (2003).

    Article  ADS  Google Scholar 

  16. A. S. Komolov and P. J. Moeller, Appl. Surf. Sci. 212–213, 497 (2003).

    Article  Google Scholar 

  17. A. S. Komolov and P. J. Moeller, Colloids Surf., A 239, 49 (2004).

    Article  Google Scholar 

  18. I. Bartos, Prog. Surf. Sci. 59, 197 (1998).

    Article  ADS  Google Scholar 

  19. S. A. Pshenichnyuk, A. V. Kukhto, I. N. Kukhto, and A. S. Komolov, Tech. Phys. 56(6), 754 (2011).

    Article  Google Scholar 

  20. S. A. Pshenichnyuk and A. S. Komolov, J. Phys. Chem. A 116(1), 761 (2012).

    Article  Google Scholar 

  21. S. A. Komolov, E. F. Lazneva, and A. S. Komolov, Tech. Phys. Lett. 29(12), 974 (2003).

    Article  ADS  Google Scholar 

  22. T. Graber, F. Forster, A. Schoell, and F. Reinert, Surf. Sci. 605, 878 (2011).

    Article  ADS  Google Scholar 

  23. L. Yan and Y. Gao, Thin Solid Films 417, 101 (2002).

    Article  ADS  Google Scholar 

  24. I. Hill, D. Milliron, J. Schwartz, and A. Kahn, Appl. Surf. Sci. 166, 354 (2000).

    Article  ADS  Google Scholar 

  25. A. S. Komolov, S. N. Akhremtchik, and E. F. Lazneva, Spectrochim. Acta, Part A 798, 708 (2011).

    Article  ADS  Google Scholar 

  26. Y. Stöhr, NEXAFS Spectroscopy (Springer-Verlag, Berlin, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Additional information

Original Russian Text © A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, Yu.A. Panina, A.V. Baramygin, Ya.V. Akhremchik, A.V. Povolotskiy, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 12, pp. 2464–2467.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komolov, A.S., Lazneva, E.F., Gerasimova, N.B. et al. Transmission of low-energy electrons through ultrathin layers of tin(IV) phthalocyanine oxide. Phys. Solid State 56, 2556–2560 (2014). https://doi.org/10.1134/S1063783414120178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414120178

Keywords

Navigation