Skip to main content
Log in

Elastic models of defects in two-dimensional crystals

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Elastic models of defects in two-dimensional (2D) crystals are presented in terms of continuum mechanics. The models are based on the classification of defects, which is founded on the dimensionality of the specification region of their self-distortions, i.e., lattice distortions associated with the formation of defects. The elastic field of an infinitesimal dislocation loop in a film is calculated for the first time. The fields of the center of dilatation, dislocation, disclination, and circular inclusion in planar 2D elastic media, namely, nanofilms and graphenes, are considered. Elastic fields of defects in 2D and 3D crystals are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).

    Article  ADS  Google Scholar 

  2. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, New York, 2012).

    Book  Google Scholar 

  3. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).

    Article  ADS  Google Scholar 

  4. J. Baggott, Perfect Symmetry: The Accidental Discovery of Buckminsterfullerene (Oxford University Press, Oxford, 1995).

    Google Scholar 

  5. W. F. Harris and L. E. Scriven, Nature (London) 228, 827 (1970).

    Article  ADS  Google Scholar 

  6. F. R. N. Nabarro and W. F. Harris, Nature (London) 232, 423 (1971).

    Article  ADS  Google Scholar 

  7. M. Kleman, Points, Lines and Walls (Wiley, New York, 1983).

    Google Scholar 

  8. M. Kleman and J. Friedel, Rev Mod. Phys. 80, 61 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. H. Träuble and U. Essmann, J. Appl. Phys. 39(9), 4052 (1968).

    Article  ADS  Google Scholar 

  10. A. L. Kolesnikova and A. E. Romanov, Phys. Solid State 40(6), 1075 (1998).

    Article  ADS  Google Scholar 

  11. B. I. Yakobson and F. Ding, ACS Nano 5, 1569 (2011).

    Article  Google Scholar 

  12. J. Zhang and J. Zhao, Carbon 55, 151 (2013).

    Article  Google Scholar 

  13. O. V. Yazyev, Solid State Commun. 152, 1431 (2012).

    Article  ADS  Google Scholar 

  14. L. Tapaszto, P. Nemes-Incze, G. Dobrik, K. Yoo Jae, C. Hwang, and L. P. Biro, Appl. Phys. Lett. 100, 053114 (2012).

    Article  ADS  Google Scholar 

  15. A. E. Romanov, A. L. Kolesnikova, T. S. Orlova, I. Hussainova, V. E. Bougrov, and R. Z. Valiev, Carbon (2014) (in press).

    Google Scholar 

  16. T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff, Dordrecht, 1987).

    Book  Google Scholar 

  17. R. De Vit, Continuum Theory of Disclinations (Mir, Moscow, 1977) [in Russian].

    Google Scholar 

  18. J. D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. A. L. Kolesnikova, R. M. Soroka, and A. E. Romanov, Mater. Phys. Mech. 17(1), 71 (2013).

    Google Scholar 

  20. F. Kroupa, in Theory of Crystal Defects: Proceedings of the Summer School (Academia, Prague, 1966), p. 276.

    Google Scholar 

  21. C. Somigliana, Atti. Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nad., Rend. 24, 655 (1915).

    MATH  Google Scholar 

  22. A. L. Kolesnikova and A. E. Romanov, Preprint No. 1019, FTI (Ioffe Physical-Technical Institute, Academy of Sciences of the USSR, Leningrad, 1986).

  23. A. L. Kolesnikova and A. E. Romanov, Phys. Solid State 45(9), 1706 (2003).

    Article  ADS  Google Scholar 

  24. V. Volterra, Ann. Sci. Ec. Norm. Super. 24(4), 401 (1907).

    MATH  MathSciNet  Google Scholar 

  25. J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982).

    Google Scholar 

  26. T. Mura, in Advanced in Materials Research, Ed. by H. Herman (Interscience, New York, 1968), Vol. 3, p. 1.

  27. A. L. Kolesnikova and A. E. Romanov, Sov. Tech. Phys. Lett. 13(6), 272 (1987).

    Google Scholar 

  28. A. L. Kolesnikova and A. E. Romanov, Dislocation Models of Inclusions (1990) (unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Romanov.

Additional information

Original Russian Text © A.L. Kolesnikova, T.S. Orlova, I. Hussainova, A.E. Romanov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 12, pp. 2480–2485.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikova, A.L., Orlova, T.S., Hussainova, I. et al. Elastic models of defects in two-dimensional crystals. Phys. Solid State 56, 2573–2579 (2014). https://doi.org/10.1134/S1063783414120166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414120166

Keywords

Navigation