Skip to main content
Log in

Effect of carrier heating on photovoltage in FET

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Within the framework of the Boltzmann equation, we have calculated the dc electric current and emf induced in a two-dimensional system by a high-frequency field of an electromagnetic wave or by an electric field of a plasmon wave. It has been established that the generated current consists of two contributions, one of which is proportional to the real part of the wave vector projection of the exciting wave onto the interface plane and represents the electron drag effect, and the other contribution is proportional to the extinction coefficient of the wave in the interface plane. It has been shown that the main cause of the second contribution is a nonuniform electron heating created by the wave and controlled by the energy relaxation time of the electron gas. In field-effect transistors (FET), the heating mechanism of the electric-current formation can significantly exceed the current calculated neglecting the heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993).

    Article  ADS  Google Scholar 

  2. M. Dyakonov and M. Shur, IEEE Trans. Electron Devices 43, 380 (1996).

    Article  ADS  Google Scholar 

  3. W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Łusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M. S. Shur, Appl. Phys. Lett. 85, 675 (2004).

    Article  ADS  Google Scholar 

  4. W. Knap, G. Valučis, J. Łusakowski, D. Coquillat, F. Teppe, N. Dyakonova, S. Nadar, K. Karpierz, M. Bialek, D. Seliuta, I. Kašalynas, and A. El Fatimy, Phys. Status Solidi C 6, 2828 (2009).

    Article  ADS  Google Scholar 

  5. C. Drexler, N. Dyakonova, P. Olbrich, J. Karch, M. Schafberger, K. Karpierz, Yu. Mityagin, M. B. Lifshits, F. Teppe, O. Klimenko, Y. M. Meziani, W. Knap, and S. D. Ganichev, Appl. Phys. Lett. 111, 124504 (2012).

    Google Scholar 

  6. V. I. Perel’ and Ya. M. Pinskii, Sov. Phys. Solid State 15(4), 688 (1973).

    Google Scholar 

  7. P. Olbrich, J. Karch, E. L. Ivchenko, J. Kamann, B. März, M. Fehrenbacher, D. Weiss, and S. D. Ganichev, Phys. Rev. B: Condens. Matter 83, 165320 (2011).

    Article  ADS  Google Scholar 

  8. H. M. Barlow, Nature (London) 173, 41 (1954).

    Article  ADS  Google Scholar 

  9. L. E. Gurevich and A. A. Rumyantsev, Sov. Phys. Solid State 9(1), 55 (1967).

    Google Scholar 

  10. V. I. Perel’ and Ya. M. Pinskii, Sov. Phys. JETP 27(6), 1014 (1968).

    ADS  Google Scholar 

  11. A. M. Danishevskii, A. A. Kastal’skii, S. M. Ryvkin, and I. D. Yaroshetskii, Sov. Phys. JETP 31(2), 292 (1970).

    ADS  Google Scholar 

  12. A. A. Grinberg, Sov. Phys. JETP 31(3), 531 (1970).

    ADS  Google Scholar 

  13. A. F. Gibson, M. E. Kimmit, and A. C. Walker, Appl. Phys. Lett. 17, 75 (1970).

    Article  ADS  Google Scholar 

  14. S. Stachel, G. V. Budkin, U. Hagner, V. V. Bel’kov, M. M. Glazov, S. A. Tarasenko, S. K. Clowes, T. Ashley, A. M. Gilbertson, and S. D. Ganichev, Phys. Rev. B: Condens. Matter 89, 115435 (2014).

    Article  ADS  Google Scholar 

  15. J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, Phys. Rev. Lett. 105, 227402 (2010).

    Article  ADS  Google Scholar 

  16. G. R. Aizin, V. V. Popov, and O. V. Polischuk, Appl. Phys. Lett. 89, 143512 (2006).

    Article  ADS  Google Scholar 

  17. G. R. Aizin, D. V. Fateev, G. M. Tsymbalov, and V. V. Popov, Appl. Phys. Lett. 91, 163507 (2007).

    Article  ADS  Google Scholar 

  18. V. V. Popov, Appl. Phys. Lett. 102, 253504 (2013).

    Article  ADS  Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987), Chap. I.

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 10: E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Butterworth-Heinemann, Oxford, 1995), Chap. I.

    Google Scholar 

  21. V. M. Murav’ev, I. V. Kukushkin, J. Smet, and K. von Klitzing, JETP Lett. 90(3), 197 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Ivchenko.

Additional information

Original Russian Text © E.L. Ivchenko, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 12, pp. 2426–2429.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivchenko, E.L. Effect of carrier heating on photovoltage in FET. Phys. Solid State 56, 2514–2518 (2014). https://doi.org/10.1134/S1063783414120142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414120142

Keywords

Navigation