Skip to main content
Log in

Investigation of the polarization dependence of the transient current in polycrystalline and epitaxial Pb(Zr,Ti)O3 thin films

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The polarization dependence of the current in epitaxial and polycrystalline (with conductive grain boundaries) Pb(Zr,Ti)O3 (PZT) films is studied using direct-current (dc) measurements and scanning spreading current microscopy. Both methods show identical results in micro- and nanoscale ranges. The current response from the film to the applied bias contains a long relaxation component that depends on the bias rise rate and polarization direction, exhibiting current peaks near the coercive force value. The polarization dependences of the current for polycrystalline and epitaxial films are found to be fundamentally different. The current of the polycrystalline film is much higher when the bias is directed against the polarization, whereas the current of the epitaxial film is higher if the bias and polarization directions coincide. All films exhibit current hysteresis of non-ferroelectric (clockwise) direction with decreasing bias. It is also shown that the polarization dependences of the transient current in both polycrystalline and epitaxial films are similar to the polarization dependence of the photovoltaic current in these films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Vorotilov, V. M. Mukhortov, and A. S. Sigov, Integrated Ferroelectrics (Energoatomizdat, Moscow, 2011) [in Russian].

    Google Scholar 

  2. K. A. Vorotilov and A. S. Sigov, Phys. Solid State 54(5), 894 (2012).

    Article  ADS  Google Scholar 

  3. L. Pintilie, in Ferroelectrics: Physical Effects, Ed. by M. Lallart (InTech, Rijeka, Croatia, 2011), Chap. 5. http://www.intechopen.com/articles/show/title/charge-transport-in-ferroelectric-thin-films.

  4. J. F. Scott, in Ferroelectric Memories, Ed. by K. Itoh and T. Sakurai (Springer-Verlag, Heidelberg, 2006).

  5. M. Dawber, K. M. Rabbe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).

    Article  ADS  Google Scholar 

  6. J. F. Scott, B. M. Melnick, C. A. Araujo, L. D. McMillan, and R. Zuleeg, Integr. Ferroelectr. 1, 323 (1992).

    Article  Google Scholar 

  7. T. Mihara and H. Watanabe, Jpn. J. Appl. Phys. 34, 5664 (1995).

    Article  ADS  Google Scholar 

  8. A. Sigov, Yu. Podgorny, K. Vorotilov, and A. Vishnevskiy, Phase Transform. 86, 1141 (2013).

    Article  Google Scholar 

  9. R. Moazzami, C. Hu, and W. Shepherd, IEEE Trans. Electron Devices 39, 2044 (1992).

    Article  ADS  Google Scholar 

  10. Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, J. Appl. Phys. 84, 5005 (1998).

    Article  ADS  Google Scholar 

  11. A. L. Kholkin, A. K. Tagantsev, E. L. Colla, K. G. Brooks, and N. Setter, Ferroelectrics 186, 203 (1996).

    Article  Google Scholar 

  12. I. Boerasu, L. Pintilie, M. Pereira, M. I. Vasilevskiy, and J. M. Gomes, J. Appl. Phys. 93, 4776 (2003).

    Article  ADS  Google Scholar 

  13. Y. Watanabe, Phys. Rev. B: Condens. Matter 57, R5563 (1998).

    Article  ADS  Google Scholar 

  14. L. Stolichnov and A. Tagantsev, J. Appl. Phys. 84, 3216 (1998).

    Article  ADS  Google Scholar 

  15. E. Bouyssou, R. Jerisian, N. Cezac, P. Leduc, G. Guegan, and C. Anceau, Mater. Sci. Eng., B 118, 28 (2005).

    Article  Google Scholar 

  16. Y. Watanabe, Phys. Rev. B: Condens. Matter 59, 11257 (1999).

    Article  ADS  Google Scholar 

  17. L. Pintilie, I. Boerasu, M. J. M. Gomes, T. Zhao, R. Ramesh, and M. Alexe, J. Appl. Phys. 98, 124104 (2005).

    Article  ADS  Google Scholar 

  18. L. Pintilie, I. Vrejoiu, D. Hesse, G. LeRhum, and M. Alexe, Phys. Rev. B: Condens. Matter 75, 104103 (2007).

    Article  ADS  Google Scholar 

  19. P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, Phys. Rev. Lett. 73, 2107 (1994).

    Article  ADS  Google Scholar 

  20. H. Kohlstedt, N. A. Pertsev, J. Rodrigues Contreras, and R. Waser, Phys. Rev. B: Condens. Matter 72, 125341 (2005).

    Article  ADS  Google Scholar 

  21. P. Maksymovich, S. Jesse, P. Yu, R. Ramesh, A. P. Baddorf, and S. Kalinin, Science (Washington) 324, 1421 (2009).

    Article  ADS  Google Scholar 

  22. J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, arXiv:1205.0164v1 [cond-mat.mtrl-sci] 1 May (2012).

  23. C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, C. J. Mogab, and J. C. Lee, J. Appl. Phys. 75, 1014 (1994).

    Article  ADS  Google Scholar 

  24. R. Waser and M. Klee, Integr. Ferroelectr. 2, 23 (1992).

    Article  Google Scholar 

  25. X. Chen, A. I. Kingon, L. Mantese, O. Auciello, and K. Y. Hsieh, Integr. Ferroelectr. 3, 355 (1993).

    Article  Google Scholar 

  26. L. A. Delimova, I. V. Grekhov, D. V. Mashovets, I. E. Titkov, V. P. Afanasiev, P. V. Afanasiev, P. V. Afanasiev, G. P. Kramar, and A. A. Petrov, Ferroelectrics 348, 25 (2007).

    Article  Google Scholar 

  27. E. V. Gushchina, A. V. Ankudinov, L. A. Delimova, V. S. Yuferev, and I. V. Grekhov, Phys. Solid State 54(5), 1005 (2012).

    Article  ADS  Google Scholar 

  28. K. Lee, J.-M. Ku, C.-R. Cho, Y. K. Lee, S. Shin, and Y. Park, J. Semicond. Sci. Technol. 2, 205 (2002).

    Google Scholar 

  29. L. A. Delimova, V. S. Yuferev, A. V. Ankudinov, E. V. Gushchina, and I. V. Grekhov, Mater. Res. Soc. Symp. Proc. 1292, mrsf10-1291-k03-31 (2011). doi 10.1551/opl.2011.367. http://journals.cambridge.org/abstract-S1946427411003678.

  30. L. A. Delimova, V. S. Yuferev, and I. V. Grekhov, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 58, 2252 (2011).

    Article  Google Scholar 

  31. A. M. Glass, D. von der Linde, D. H. Austin, and T. J. Negran, J. Electron. Mater. 4, 915 (1975).

    Article  ADS  Google Scholar 

  32. V. I. Belinicher, I. F. Kanaev, V. K. Malinovskii, and B. I. Sturman, Avtometriya, No. 4, 23 (1976).

    Google Scholar 

  33. L. A. Delimova and V. S. Yuferev, J. Appl. Phys. 108, 084110 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Delimova.

Additional information

Original Russian Text © L.A. Delimova, E.V. Gushchina, V.S. Yuferev, I.V. Grekhov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 12, pp. 2366–2375.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delimova, L.A., Gushchina, E.V., Yuferev, V.S. et al. Investigation of the polarization dependence of the transient current in polycrystalline and epitaxial Pb(Zr,Ti)O3 thin films. Phys. Solid State 56, 2451–2460 (2014). https://doi.org/10.1134/S1063783414120099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414120099

Keywords

Navigation