Skip to main content
Log in

Maximum yield strength under quasi-static and high-rate plastic deformation of metals

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dependence of the yield strength of metals on the grain size and initial dislocation density in a wide range of strain rates has been analyzed within a unified approach. It has been shown that the barrier stress and characteristic time of plastic relaxation completely determine the shear strength of metals for all strain rates. The existence of alternative (to dislocation glide) mechanisms of plastic deformation in the material, limits the increase in the yield strength with increasing strain rate and leads to the appearance of a maximum in the dependence of the yield strength on the grain size. It has been found that, at extremely high strain rates, the maximum yield strength corresponds to grain sizes of the order of several hundred nanometers. This has been explained by the dislocation starvation effect of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Shtremel’, Strength of Alloys: Part 2. Deformation (Moscow Institute of Steel and Alloys, Moscow, 1997) [in Russian].

    Google Scholar 

  2. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, New York, 2009).

    MATH  Google Scholar 

  3. H. Gleiter and B. Chalmers, High-Angle Grain Boundaries (Pergamon, Oxford, 1972; Mir, Moscow, 1975).

    Google Scholar 

  4. J. W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  5. M. A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994).

    Book  MATH  Google Scholar 

  6. E. N. Borodin and A. E. Mayer, Phys. Solid State. 54(4), 808 (2012).

    Article  ADS  Google Scholar 

  7. E. N. Borodin and A. E. Mayer, Mater. Sci. Eng., A 532, 245 (2012).

    Article  Google Scholar 

  8. A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, Phys. Solid State 50(11), 2069 (2008).

    Article  ADS  Google Scholar 

  9. V. S. Krasnikov, A. E. Mayer, and A. P. Yalovets, Int. J. Plast. 27, 1294 (2011).

    Article  MATH  Google Scholar 

  10. A. A. Gruzdkov, Yu. V. Petrov, and V. I. Smirnov, Phys. Solid State 44(11), 2080 (2002).

    Article  ADS  Google Scholar 

  11. A. A. Gruzdkov, E. V. Sitnikova, N. F. Morozov, and Y. V. Petrov, Math. Mech. Solids 14, 72 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Gruzdkov and Y. Petrov, J. Ningbo Univ. (NSEE) 25, 78 (2012).

    Google Scholar 

  13. A. E. Dudorov and A. E. Maier, Vestn. Chelyab. Gos. Univ., Fiz. 39, 48 (2011).

    Google Scholar 

  14. A. E. Mayer, K. V. Khishchenko, P. R. Levashov, and P. N. Mayer, J. Appl. Phys. 113, 193508 (2013).

    Article  ADS  Google Scholar 

  15. L. A. Merzhievsky and A. V. Tyagel’sky, J. Phys. (Paris) 49, C3–457 (1988).

    Article  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 2003; Butterworth-Heinemann, Oxford, 2005).

    Google Scholar 

  17. Yu. N. Robotnov, Elements of Hereditary Solid Mechanics (Nauka, Moscow, 1977; Mir, Moscow, 1980).

    Google Scholar 

  18. Shock Waves and High-Strain-Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum, New York, 1981; Metallurgiya, Moscow, 1984).

    Google Scholar 

  19. J. R. Greer and J. Th. M. De Hosson, Prog. Mater. Sci. 56, 654 (2011).

    Article  Google Scholar 

  20. R. W. Armstrong and F. J. Zerilli, J. Phys. D: Appl. Phys. 43, 492002 (2010).

    Article  Google Scholar 

  21. M. A. Meyers, O. V. Hringer, and V. A. Lubarda, Acta Mater. 49, 4025 (2001).

    Article  Google Scholar 

  22. S. Allain, J.-P. Chateau, and O. Bouaziz, Mater. Sci. Eng., A. 387–389, 143 (2004).

    Article  Google Scholar 

  23. H. V. Swygenhoven and P. M. Derlet, Phys. Rev. B: Condens. Matter. 64, 224105 (2001).

    Article  ADS  Google Scholar 

  24. D. McLean, Grain Boundaries in Metals (Clarendon, Oxford, 1957; Metallurgizdat, Moscow, 1960).

    Google Scholar 

  25. H. V. Swygenhoven and A. Caro, Phys. Rev. B: Condens. Matter 58, 11246 (1998).

    Article  ADS  Google Scholar 

  26. J. P. Cui, Y. L. Hao, S. J. Li, M. L. Sui, D. X. Li, and R. Yang, Phys. Rev. Lett. 102, 045503 (2009).

    Article  ADS  Google Scholar 

  27. G. E. Norman and A. V. Yanilkin, Phys. Solid State 53(8), 1614 (2011).

    Article  Google Scholar 

  28. E. N. Borodin, S. A. Atroshenko, and A. E. Mayer, Tech. Phys. 59(8), 1163 (2014).

    Article  Google Scholar 

  29. Y. M. Wang, E. M. Bringa, J. M. McNaney, M. Victoria, A. Caro, A. M. Hodge, R. Smith, B. Torralva, B. A. Remington, C. A. Schuh, H. Jamarkani, and M. A. Meyers, Appl. Phys. Lett. 88, 061917 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Borodin.

Additional information

Original Russian Text © E.N. Borodin, A.E. Mayer, Yu.V. Petrov, A.A. Gruzdkov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 12, pp. 2384–2393.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, E.N., Mayer, A.E., Petrov, Y.V. et al. Maximum yield strength under quasi-static and high-rate plastic deformation of metals. Phys. Solid State 56, 2470–2479 (2014). https://doi.org/10.1134/S1063783414120051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414120051

Keywords

Navigation