Physics of the Solid State

, Volume 56, Issue 6, pp 1239–1244 | Cite as

On the vineyard formula for the pre-exponential factor in the Arrhenius law

Low-Dimensional Systems

Abstract

By using the example of several typical thermally activated processes in atomic clusters, organic molecules, and nanostructures, it has been shown that calculations of the corresponding pre-exponential factors in the Arrhenius law according to the Vineyard formula are in good agreement with the molecular dynamics simulation data for temperature dependences of characteristic times of these processes. This “static” approach (together with the determination of the activation energy through the examination of the potential energy hypersurface) provides information on kinetic characteristics of the system without resorting to numerical simulation of the time evolution, which requires large computer resources.

Keywords

Fullerene Saddle Point Cubane Frequency Factor Molecular Dynamic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Wert and C. Zener, Phys. Rev. 76, 1169 (1949).ADSCrossRefGoogle Scholar
  2. 2.
    M. M. Maslov, Russ. J. Phys. Chem. B 4(1), 170 (2010).CrossRefGoogle Scholar
  3. 3.
    F. Montalenti and A. F. Voter, Phys. Status Solidi B 226, 21 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    A. I. Podlivaev and L. A. Openov, Phys. Solid State 54(7), 1507 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    L. A. Openov and A. I. Podlivaev, JETP Lett. 84(2), 68 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 51(3), 645 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    A. I. Podlivaev and K. P. Katin, JETP Lett. 92(1), 52 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    A. I. Podlivaev and L. A. Openov, Semiconductors 45(7), 958 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    L. A. Openov, A. I. Podlivaev, and M. M. Maslov, Phys. Lett. A 376, 3146 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G. Su, J. Appl. Phys. 112, 074315 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys.: Condens. Matter 4, 6047 (1992).ADSGoogle Scholar
  12. 12.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).ADSCrossRefGoogle Scholar
  14. 14.
    A. I. Podlivaev and L. A. Openov, Phys. Solid State 55(12), 2592 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    A. Santana, A. M. Popov, and E. Bichoutskaia, Chem. Phys. Lett. 557, 80 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    C. Lifshitz, Int. J. Mass Spectrom. 198, 1 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    S. Tomita, J. U. Andersen, K. Hansen, and P. Hvelplund, Chem. Phys. Lett. 382, 120 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    K. Hansen, E. E. B. Campbell, and O. Echt, Int. J. Mass Spectrom. 252, 79 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 53(12), 2532 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    P. E. Eaton and T. W. Cole, Jr., J. Am. Chem. Soc. 86, 962 (1964).CrossRefGoogle Scholar
  21. 21.
    M. A. White, R. E. Wasylishen, P. E. Eaton, Y. Xiong, K. Pramod, and N. Nodari, J. Phys. Chem. 96, 421 (1992).CrossRefGoogle Scholar
  22. 22.
    J. An, L.-H. Gan, X. Fan, and F. Pan, Chem. Phys. Lett. 511, 351 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    A. I. Podlivaev and L. A. Openov, JETP Lett. 81(10), 533 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 9, 3867 (2009).CrossRefGoogle Scholar
  27. 27.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    I. V. Davydov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 47(4), 778 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    L. A. Openov, D. A. Lobanov, and A. I. Podlivaev, Phys. Solid State 52(1), 201 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    M. M. Maslov, Russ. J. Phys. Chem. B 3(2), 211 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. M. Maslov
    • 1
  • L. A. Openov
    • 1
  • A. I. Podlivaev
    • 1
  1. 1.National Research Nuclear University “MEPhI,”MoscowRussia

Personalised recommendations