Physics of the Solid State

, Volume 56, Issue 6, pp 1200–1205 | Cite as

Temperature evolution of dielectric response spectra of stillwellite-like glasses in the terahertz and infrared ranges

  • G. A. Komandin
  • O. E. PorodinkovEmail author
  • Yu. G. Goncharov
  • I. E. Spektor
  • L. D. Iskhakova
  • V. N. Sigaev
  • S. V. Lotarev
  • V. I. Torgashev
Optical Properties


The reflectance and transmittance spectra of the PrBGeO5 glass were measured in the terahertz and infrared ranges. At low temperatures, an increase in the permittivity and the appearance of narrow resonance-type lines in the terahertz range were revealed. The complex permittivity spectra were calculated from the Fresnel and Kramers-Kronig formulas.


Second Harmonic Generation Boson Peak Fresnel Formula Dielectric Response Function Dielectric Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Gurevich, D. A. Parshin, and H. R. Schrober, Phys. Rev. B: Condens. Matter 67, 094203 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    R. S. Krishnan, Proc. Indian Acad. Sci., Sect. A 37, 377 (1953).Google Scholar
  3. 3.
    P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25(1), 1 (1972).ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    R. Berman, Phys. Rev. 76, 315 (1949).ADSCrossRefGoogle Scholar
  6. 6.
    R. Zorn, Physics 4, 44 (2011).CrossRefGoogle Scholar
  7. 7.
    W. Schirmacher, G. Diezemann, and C. Ganter, Phys. Rev. Lett. 81(1), 136 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    F. L. Galeener, A. J. Leadbetter, and M. W. Stringfellow, Phys. Rev. B: Condens. Matter 27(2), 1052 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    E. P. J. Parrott, J. A. Zeitler, G. Simon, B. Hehlen, L. F. Gladden, S. N. Taraskin, and S. R. Elliot, Phys. Rev. B: Condens. Matter 82, 140203(R) (2010).ADSCrossRefGoogle Scholar
  10. 10.
    G. A. Komandin, V. N. Sigaev, V. I. Torgashev, S. V. Lotarev, O. E. Porodinkov, and I. E. Spektor, Phys. Solid State 54(11), 2189 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    V. N. Sigaev, S. V. Lotarev, E. V. Orlova, S. Yu. Stefanovich, P. Pernice, A. Aronne, E. Fanelli, and I. Gregora, J. Non-Cryst. Solids 353, 1956 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    B. A. Strukov, A. Onodera, E. P. Ragula, S. Yu. Stefanovich, I. V. Shnaidshtein, and S. V. Arkhangel’skaya, Phys. Solid State 40(7), 1193 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    E. V. Milov and B. A. Strukov, Phys. Solid State 43(3), 513 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    J. Campany and J. Garsia Solé, Appl. Phys. Lett. 70(19), 2517 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    V. N. Sigaev, S. Yu. Stefanovich, P. D. Sarkisov, and E. V. Lopatina, Mater. Sci. Eng., B 32(1–2), 17 (1995).CrossRefGoogle Scholar
  16. 16.
    V. N. Sigaev, E. V. Lopatina, and P. D. Sarkisov, Glass Phys. Chem. 22(2), 117 (1996).Google Scholar
  17. 17.
    P. Gupta, H. Jain, D. B. Williams, O. Kanert, and R. Kuechler, J. Non Cryst. Solids 349, 291 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, Opt. Express 17(25), 23284 (2009).CrossRefGoogle Scholar
  19. 19.
    S. Yu. Stefanovich and B. H. Sigaev, Glass Phys. Chem. 21(4), 253 (1995).Google Scholar
  20. 20.
    G. V. Kozlov and A. A. Volkov, Top. Appl. Phys. 74, 51 (1998).CrossRefGoogle Scholar
  21. 21.
    R. P. Lowndes, J. F. Parrish, and C. H. Perry, Phys. Rev. 182, 913 (1969).ADSCrossRefGoogle Scholar
  22. 22.
    G. A. Komandin, E. S. Zhukova, V. I. Torgashev, A. V. Boris, A. A. Boris, E. A. Motovilova, A. S. Prokhorov, L. S. Kadyrov, B. P. Gorshunov, and M. Dressel, J. Appl. Phys. 114, 024102 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    I. Hruba, S. Kamba, J. Petzelt, I. Gregora, Z. Zikmund, D. Ivannikov, G. Komandin, A. Volkov, and B. Strukov, Phys. Status Solidi B 214, 423 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    M. V. Smirnov, A. V. Menschikova, I. Kratochvilova-Hruba, and Z. Zikmund, Phys. Status Solidi B 241(5), 1017 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    E. N. Smelyanskaya, P. D. Sarkisov, V. N. Sigaev, G. V. Kozlov, A. A. Volkov, V. V. Voitsekhovskii, and G. A. Komandin, Glass Phys. Chem. 21(5), 317 (1995).Google Scholar
  26. 26.
    V. K. Malinovskii, V. N. Novikov, and A. P. Sokolov, Fiz. Khim. Stekla 15(3), 331 (1989).Google Scholar
  27. 27.
    V. K. Malinovskii, Phys. Solid State 41(5), 725 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    P. Lunkenheimer, U. Schneider, R. Brand, and A. Loidl, Contemp. Phys. 41(1), 15 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    P. Lunkenheimer and A. Loidl, Chem. Phys. 284, 205 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • G. A. Komandin
    • 1
  • O. E. Porodinkov
    • 1
    Email author
  • Yu. G. Goncharov
    • 1
  • I. E. Spektor
    • 1
  • L. D. Iskhakova
    • 2
  • V. N. Sigaev
    • 3
  • S. V. Lotarev
    • 3
  • V. I. Torgashev
    • 4
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Fiber Optics Research CenterRussian Academy of SciencesMoscowRussia
  3. 3.International Laboratory of Functional Glass-Based MaterialsMendeleyev University of Chemical Technology of RussiaMoscowRussia
  4. 4.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations