Skip to main content
Log in

Structural and magnetic inhomogeneities, phase transitions, 55Mn nuclear magnetic resonance, and magnetoresistive properties of La0.6 − x Nd x Sr0.3Mn1.1O3-δ ceramics

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure, lattice imperfection, and properties of ceramic samples La0.6 − x Nd x Sr0.3Mn1.1O3-δ (x = 0–0.4) have been investigated using the X-ray diffraction, resistive, magnetic (χac, 55Mn NMR), magnetoresistive and microscopic methods. It has been shown that there is a satisfactory agreement between the concentration decrease in the lattice parameters a of the rhombohedral (x = 0, 0.1, 0.2) and cubic (x = 0.3, 0.4) perovskite structures and the average ionic radii \(\bar R\) for the lattice containing anion vacancies, cation vacancies, and nanostructured clusters with Mn2+ ions in A-positions. With an increase in the neodymium concentration x, the vacancy-type imperfection increases, the cluster-type imperfection decreases, the temperatures of metal-semiconductor phase transition T ms and ferromagnetic-paramagnetic phase transition T C decrease, and the content of the ferromagnetic phase decreases. The anomalous hysteresis is associated with the appearance of unidirectional exchange anisotropy induced in a clustered perovskite structure consisting of a ferromagnetic matrix and a planar antiferromagnetic cluster coherently coupled with it. An analysis of the asymmetrically broadened 55Mn NMR spectra has revealed a high-frequency electronic double exchange (Mn3+-O2−-Mn4+) ↔ (Mn4+-O2−-Mn3+) and an inhomogeneity of the magnetic and charge states of manganese due to the heterogeneous environment of the manganese ions by other ions and defects. The observed changes in the resonant frequency and width of the resonance curve are caused by changes in the ratio Mn3+/Mn4+ and magnetic inhomogeneity. An increase in the neodymium concentration x leads to a decrease in the ferromagnetic phase content determined from the dependences 4πNχac(T) and the 55Mn NMR curves. The phase diagram characterizes an interrelation between the composition, the imperfection of the structure, and the transport, magnetic, and magnetoresistive properties of lanthanum neodymium manganite perovskites. It has been found that there is a correlation between the imperfection, magnetic inhomogeneity, coercive force, and magnetoresistance effect exhibited by the perovskite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  2. N. F. Mott, Adv. Phys. 50, 865 (2001).

    Article  ADS  Google Scholar 

  3. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  4. V. P. Pashchenko, N. I. Nosanov, and A. A. Shemyakov, UA Patent 45153, Byull. Izobret., No. 9 (2005).

    Google Scholar 

  5. S. Khizroev, Y. Hijazi, R. Chomko, S. Mukherjee, R. Chantrell, X. Wu, R. Carley, and D. Litvinov, Appl. Phys. Lett. 86, 042502 (2005).

    Article  ADS  Google Scholar 

  6. F. Yang, L. Méchin, J.-M. Routoure, B. Guillet, and R. A. Chakalov, J. Appl. Phys. 99, 024903 (2006).

    Article  ADS  Google Scholar 

  7. P. Mandal and B. Ghosh, Phys. Rev. B: Condens. Matter. 68, 014422 (2003).

    Article  ADS  Google Scholar 

  8. V. P. D’yakonov, V. P. Pashchenko, E. E. Zubov, V. I. Mikhailov, Yu. Bukhantsev, I. M. Fita, V. A. Turchenko, N. A. Doroshenko, A. Szevczik, R. Zuberek, and G. Szymczak, Phys. Solid State 45(5), 914 (2003).

    Article  ADS  Google Scholar 

  9. V. P. Dyakonov, I. Fita, E. Zubov, V. Pashchenko, V. Mikhaylov, V. Prokopenko, Yu. Bukhantsev, M. Arciszewska, W. Dobrowolski, A. Nabialek, and H. Szymczak, J. Magn. Magn. Mater. 246, 40 (2002).

    Article  ADS  Google Scholar 

  10. G. S. Krinchik, Physics of Magnetic Phenomena (Moscow State University, Moscow, 1985) [in Russian].

    Google Scholar 

  11. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).

    Article  ADS  Google Scholar 

  12. V. P. Pashchenko, S. I. Khartsev, O. P. Cherenkov, A. A. Shemyakov, Z. A. Samoilenko, A. D. Loiko, and V. I. Kamenev, Inorg. Mater. 35(12), 1294 (1999).

    Google Scholar 

  13. V. P. Pashchenko, A. A. Shemyakov, V. K. Prokopenko, V. N. Derkachenko, O. P. Cherenkov, V. I. Mihajlov, V. N. Varyukhin, V. P. Dyakonov, and H. Szymczak, J. Magn. Magn. Mater. 220, 52 (2000).

    Article  ADS  Google Scholar 

  14. A. V. Pashchenko, V. P. Pashchenko, Yu. F. Revenko, V. K. Prokopenko, A. A. Shemyakov, V. A. Turchenko, V. Ya. Sycheva, B. M. Efros, V. P. Komarov, and L. G. Gusakova, Metallofiz. Noveishie Tekhnol. 32, 487 (2010).

    Google Scholar 

  15. Yu. A. Izyumov and Yu. N. Skryabin, Phys.-Usp. 44(2), 109 (2001).

    Article  ADS  Google Scholar 

  16. N. V. Volkov, Phys.-Usp. 55(3), 250 (2012).

    Article  ADS  Google Scholar 

  17. Z. A. Samoilenko, N. N. Ivakhnenko, A. V. Pashchenko, V. P. Pashchenko, S. Yu. Prilipko, Yu. F. Re-venko, and N. G. Kisel’, Inorg. Mater. 47(9), 1019 (2011).

    Article  Google Scholar 

  18. A. V. Pashchenko, V. P. Pashchenko, V. K. Prokopenko, A. G. Sil’cheva, Yu. F. Revenko, A. A. Shemyakov, N. G. Kisel’, V. P. Komarov, V. Ya. Sycheva, S. V. Gorban’, and V. G. Pogrebnyak, Phys. Solid State 54(4), 767 (2012).

    Article  ADS  Google Scholar 

  19. V. A. Turchenko, V. P. Pashchenko, V. K. Prokopenko, A. A. Shemyakov, Yu. F. Revenko, A. V. Pashchenko, and V. Ya. Sycheva, Metallofiz. Noveishie Tekhnol. 30, 105 (2008).

    Google Scholar 

  20. E. E. Zubov, V. P. Dyakonov, and H. Szymczak, J. Exp. Theor. Phys. 95(6), 1044 (2002).

    Article  ADS  Google Scholar 

  21. D. Abou-Ras, W. Boujelben, A. Cheikh-Rouhou, J. Pierre, J.-P. Renard, L. Reversat, and K. Shimizu, J. Magn. Magn. Mater. 233, 147 (2001).

    Article  ADS  Google Scholar 

  22. M. P. De Jong, I. Bergenti, W. Osikowicz, R. Friedlein, V. A. Dediu, C. Taliani, and W. R. Salaneck, Phys. Rev. B: Condens. Matter. 73, 052403 (2006).

    Article  ADS  Google Scholar 

  23. J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  24. X. Liu, H. Zhu, and Yu. Zhan, Phys. Rev. B: Condens. Matter. 65, 024412 (2001).

    Article  ADS  Google Scholar 

  25. J. Mira, J. Rivas, F. Rivadulla, C. Vázquez-Vázquez, and M. A. López-Quintela, Phys. Rev. B: Condens. Matter. 60, 2998 (1999).

    Article  ADS  Google Scholar 

  26. R. Venkatesh, M. Pattabiraman, S. Angappane, G. Rangarajan, K. Sethupathi, J. Karatha, M. Fecioru-Morariu, R. M. Ghadimi, and G. Guntherodt, Phys. Rev. B: Condens. Matter. 75, 224415 (2007).

    Article  ADS  Google Scholar 

  27. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).

    Google Scholar 

  28. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).

    Article  ADS  Google Scholar 

  29. A. I. Mitsek and V. N. Pushkar’, Real Crystals with Magnetic Order (Naukova Dumka, Kiev, 1978) [in Russian].

    Google Scholar 

  30. K. P. Belov, Phys.-Usp. 42(7), 711 (1999).

    Article  ADS  Google Scholar 

  31. V. T. Dovgii, A. I. Linnik, V. P. Pashchenko, V. N. Derkachenko, V. K. Prokopenko, V. A. Turchenko, N. V. Davydeiko, V. Ya. Sycheva, V. P. Dyakonov, A. V. Klimov, and H. Szymczak, Low Temp. Phys. 29(4), 285 (2003).

    Article  ADS  Google Scholar 

  32. S. Chikasumi, Physics of Ferromagnetism: Magnetic Characteristics and Engineering Application (Syokabo, Tokyo, 1984; Mir, Moscow, 1987).

    Google Scholar 

  33. M. M. Savosta and P. Novak, Phys. Rev. Lett. 87, 137204 (2001).

    Article  ADS  Google Scholar 

  34. V. P. Pashchenko, G. Kakazei, A. A. Shemyakov, A. V. Pashchenko, L. T. Tsymbal, V. P. Dyakonov, H. Szymczak, J. A. M. Santos, and J. B. Sousa, Low Temp. Phys. 30(4), 299 (2004).

    Article  ADS  Google Scholar 

  35. E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance in Ferro- and Antiferromagnets (Nauka, Moscow, 1969; Israel Program for Scientific Translations, Jerusalem, 1972).

    Google Scholar 

  36. A. O. Sboychakov, A. L. Rakhmanov, K. I. Kugel, M. Yu. Kagan, and I. V. Brodsky, J. Magn. Magn. Mater. 258–259, 296 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pashchenko.

Additional information

Original Russian Text © A.V. Pashchenko, V.P. Pashchenko, V.K. Prokopenko, Yu.F. Revenko, N.G. Kisel, V.I. Kamenev, A.G. Sil’cheva, N.A. Ledenev, V.V. Burkhovetskii, G.G. Levchenko, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 5, pp. 921–930.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashchenko, A.V., Pashchenko, V.P., Prokopenko, V.K. et al. Structural and magnetic inhomogeneities, phase transitions, 55Mn nuclear magnetic resonance, and magnetoresistive properties of La0.6 − x Nd x Sr0.3Mn1.1O3-δ ceramics. Phys. Solid State 56, 955–966 (2014). https://doi.org/10.1134/S1063783414050230

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414050230

Keywords

Navigation