Skip to main content
Log in

Electronic excitations and luminescence of SrMgF4 single crystals

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic and crystal structures of SrMgF4 single crystals grown by the Bridgman method have been investigated. The undoped SrMgF4 single crystals have been studied using low-temperature (T = 10 K) time-resolved fluorescence optical and vacuum ultraviolet spectroscopy under selective excitation by synchrotron radiation (3.7–36.0 eV). Based on the measured reflectivity spectra and calculated spectra of the optical constants, the following parameters of the electronic structure have been determined for the first time: the minimum energy of interband transitions E g = 12.55 eV, the position of the first exciton peak E n = 1 = 11.37 eV, the position of the maximum of the “exciton” luminescence excitation band at 10.7 eV, and the position of the fundamental absorption edge at 10.3 eV. It has been found that photoluminescence excitation occurs predominantly in the region of the low-energy fundamental absorption edge of the crystal and that, at energies above E g , the energy transfer from the matrix to luminescence centers is inefficient. The exciton migration is the main excitation channel of photoluminescence bands at 2.6–3.3 and 3.3–4.2 eV. The direct photoexcitation is characteristic of photoluminescence from defects at 1.8–2.6 and 4.2–5.5 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Banks, S. Nakajima, and M. Shone, J. Electrochem. Soc. 127, 2234 (1980).

    Article  Google Scholar 

  2. Q. Bingyi and E. Banks, Mater. Res. Bull. 17, 1185 (1982).

    Article  Google Scholar 

  3. N. Ishizawa, K. Suda, B. E. Etschmann, T. Oya, and N. Kodama, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 57, 784 (2001).

    Article  Google Scholar 

  4. S. C. Abrahams, Acta Crystallogr., Sect. B: Struct. Sci. 58, 34 (2002).

    Article  Google Scholar 

  5. M. Yamaga, K. Itoh, S. Yabashi, Y. Masui, S. Ono, M. Sakai, and N. Sarukura, UVSOR Act. Rep. 2003, 57 (2004).

    Google Scholar 

  6. M. Yamaga, E. Hayashi, N. Kodama, K. Itoh, S. Yabashi, Y. Masui, S. Ono, N. Sarukura, T. P. J. Han, and H. G. Gallagher, J. Phys.: Condens. Matter 18, 6033 (2006).

    ADS  Google Scholar 

  7. H. Hagemann, F. Kubel, H. Bill, and F. Gingl, J. Alloys Compd. 374, 194 (2004).

    Article  Google Scholar 

  8. F. Kubel, H.-R. Hagemann, and H. Bill, Mater. Res. Bull. 32, 263 (1997).

    Article  Google Scholar 

  9. Y. Wu and C.-S. Shi, Solid State Commun. 95, 319 (1995).

    Article  ADS  Google Scholar 

  10. Y. Wu and C.-S. Shi, Acta Phys.-Chim. Sin. 11, 907 (1995).

    Google Scholar 

  11. C. Veitsch, F. Kubel, and H. Hagemann, Mater. Res. Bull. 43, 168 (2008).

    Article  Google Scholar 

  12. P. Muller, R. Herbst-Irmer, A. L. Spek, T. R. Schneider, and M. R. Sawaya, Crystal Structure Refinement: A Crystallographer’s Guide to SHELXL (Oxford University Press, New York, 2006).

    Book  Google Scholar 

  13. N. E. Kashcheeva, D. Y. Naumov, and E. V. Boldyreva, Z. Kristallogr. 214, 534 (1999).

    Article  Google Scholar 

  14. G. Zimmerer, Radiat. Meas. 42, 859 (2007).

    Article  Google Scholar 

  15. V. Lucarini, J. J. Saarinen, K. E. Peiponen, and E. M. Vartiainen, Kramers-Kronog Relations in Optical Materials Research (Springer-Verlag, Berlin, 2005).

    Google Scholar 

  16. M. Weissbluth, Atoms and Molecules (Academic, New York, 1978).

    Google Scholar 

  17. P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, Hoboken, New Jersey, United States, 2010).

    Book  Google Scholar 

  18. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).

    Google Scholar 

  19. E. F. Gross, Investigations on the Optics and Spectroscopy of Crystals and Liquids: Selected Works (Nauka, Leningrad, 1976) [in Russian].

    Google Scholar 

  20. G. W. Rubloff, Phys. Rev. B: Solid State 5, 662 (1972).

    Article  ADS  Google Scholar 

  21. C. Jouanin, J. P. Albert, and C. Gout, J. Phys. (Paris) 37, 595 (1976).

    Article  Google Scholar 

  22. A. K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer-Verlag, Berlin, 1996).

    Book  Google Scholar 

  23. K. V. Ivanovskikh, V. A. Pustovarov, and B. V. Shulgin, Nucl. Instrum. Methods Phys. Res., Sect. A 543, 229 (2005).

    Article  ADS  Google Scholar 

  24. V. N. Kolobanov, V. V. Mikhailin, S. P. Chernov, D. A. Spassky, V. N. Makhov, M. Kirm, E. Feldbach, and S. Vielhauer, J. Phys.: Condens. Matter 21(6), 375501 (2009).

    Google Scholar 

  25. L. F. Chen, L. Zhou, and K. S. Song, J. Phys.: Condens. Matter. 9, 6633 (1997).

    ADS  Google Scholar 

  26. S. C. Buchter, T. Y. Fan, V. Liberman, J. J. Zayhowski, M. Rothschild, E. J. Mason, A. Cassanho, H. P. Jenssen, and J. H. Burnett, Opt. Lett. 26, 1693 (2001).

    Article  ADS  Google Scholar 

  27. H. H. Li, J. Phys. Chem. Ref. Data 9, 161 (1980).

    Article  ADS  Google Scholar 

  28. G. W. Rubloff, J. Freeouf, H. Fritzsche, and K. Murase, Phys. Rev. Lett. 27, 361 (1971).

    Article  ADS  Google Scholar 

  29. D. Pines, Elementary Excitations in Solids: Lectures on Phonons, Electrons, and Plasmons (W. A. Benjamin, New York, 1963; Mir, Moscow, 1963).

    Google Scholar 

  30. V. Kisand, R. Kink, M. Kink, J. Maksimov, M. Kirm, and I. Martinson, Phys. Scr. 54, 542 (1996).

    Article  ADS  Google Scholar 

  31. W.-D. Cheng, J.-S. Huang, and J.-X. Lu, Phys. Rev. B: Condens. Matter 57, 1527 (1998).

    Article  ADS  Google Scholar 

  32. T. Tomiki and T. Miyata, J. Phys. Soc. Jpn. 27, 658 (1969).

    Article  ADS  Google Scholar 

  33. M. W. Williams, R. A. MacRae, and E. T. Arakawa, J. Appl. Phys. 38, 1701 (1967).

    Article  ADS  Google Scholar 

  34. A. Belsky and J. C. Krupa, Displays 19, 185 (1999).

    Article  Google Scholar 

  35. A. N. Vasil’ev and V. V. Mikhailin, Introduction to Spectroscopy of Dielectrics (Yanus-K, Moscow, 2000) [in Russian].

    Google Scholar 

  36. T. Matsumoto, M. Shirai, and K. Kan’no, J. Phys. Soc. Jpn. 64, 987 (1995).

    Article  ADS  Google Scholar 

  37. I. N. Ogorodnikov and V. A. Pustovarov, J. Lumin. 134, 113 (2013).

    Article  Google Scholar 

  38. I. N. Ogorodnikov and V. A. Pustovarov, J. Phys.: Condens. Matter. 24(8), 405902 (2012).

    Google Scholar 

  39. I. N. Ogorodnikov and V. A. Pustovarov, JETP Lett. 96(5), 308 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Ogorodnikov.

Additional information

Original Russian Text © V.A. Pustovarov, I.N. Ogorodnikov, S.I. Omelkov, L.I. Isaenko, A.P. Yelisseyev, A.A. Goloshumova, S.I. Lobanov, P.G. Krinitsyn, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 3, pp. 448–458.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustovarov, V.A., Ogorodnikov, I.N., Omelkov, S.I. et al. Electronic excitations and luminescence of SrMgF4 single crystals. Phys. Solid State 56, 456–467 (2014). https://doi.org/10.1134/S106378341403024X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341403024X

Keywords

Navigation