Skip to main content
Log in

Structure of amyloid aggregates of lysozyme from small-angle X-ray scattering data

  • Biological Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure of filament amyloid aggregates of hen egg white lysozyme in water has been investigated by the small-angle X-ray scattering method. The experimental data are described by different cylindrical models, among which the best agreement is reached with the long helix model. A comparison of the results with the small-angle neutron scattering data reveals the influence of the heavy component of the solvent (a H2O/D2O mixture) on the structure of the filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Obici, V. Perfetti, G. Palladini, R. Moratti, and G. Merlini, Biochim. Biophys. Acta 1753, 11 (2005).

    Article  Google Scholar 

  2. M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. Blake, J. Mol. Biol. 273, 729 (1997).

    Article  Google Scholar 

  3. A. E. Langkilde and B. Vestergaard, FEBS Lett. 583, 2600 (2009).

    Article  Google Scholar 

  4. Y. Yonezawa, S. Tanaka, T. Kubota, K. Wakabayashi, K. Yutani, and S. Fujiwara, J. Mol. Biol. 323, 237 (2002).

    Article  Google Scholar 

  5. U.-S. Jeng, T.-L. Lin, J. M. Lin, and D. L. Ho, Physica B (Amsterdam) 385–386, 865 (2006).

    Article  Google Scholar 

  6. P. Thiyagarajan, T. S. Burkoth, V. Urban, S. Seifert, T.L. S. Benzinger, D. M. Morgan, D. Gordon, S. C. Meredith, and D. G. Lynn, J. Appl. Crystallogr. 33, 535 (2000).

    Article  Google Scholar 

  7. B. Vestergaard, M. Groenning, M. Roessle, J. S. Kastrup, M. van de Weert, J. M. Flink, S. Frokjaer, M. Gajhede, and D. I. Svergun, PLoS Biol. 5, 1089 (2007).

    Article  Google Scholar 

  8. L. Giehma, D. I. Svergund, D. E. Otzenb, and B. Vestergaarda, Proc. Natl. Acad. Sci. USA 108, 3246 (2011).

    Article  ADS  Google Scholar 

  9. C. L. P. Oliveira, M. A. Behrens, J. S. Pedersen, K. Erlacher, D. E. Otzen, and J. S. Pedersen, J. Mol. Biol. 387, 146 (2009).

    Article  Google Scholar 

  10. W. H. Wu, X. Sun, Y. P. Yu, J. Hu, L. Zhao, Q. Liu, Y. F. Zhao, and Y. M. Li, Biochem. Biophys. Res. Commun. 373, 315 (2008).

    Article  Google Scholar 

  11. H. Skaat, G. Shafir, and S. Margel, J. Nanopart. Res. 13, 3521 (2011).

    Article  Google Scholar 

  12. L. Xiao, D. Zhao, W. H. Chan, M. M. F. Choi, and H.-W. Li, Biomaterials 31, 91 (2010).

    Article  ADS  Google Scholar 

  13. S. Rocha, A. F. Thunemann, M. D. C. Pereira, M. Coelho, H. Mohwald, and G. Brezesinski, Biophys. Chem. 137, 35 (2008).

    Article  Google Scholar 

  14. A. M. Saraiva, I. Cardoso, M. J. Saraiva, K. Tauer, M. D. C. Pereira, M. A. N. Coelho, H. Mohwald, and G. Brezesinski, Macromol. Biosci. 10, 1152 (2010).

    Article  Google Scholar 

  15. A. Bellova, E. Bystrenova, M. Koneracka, P. Kopcansky, F. Valle, N. Tomasovicova, M. Timko, J. Bagelova, F. Biscarini, and Z. Gazova, Nanotechnology 21, 065103 (2010).

    Article  ADS  Google Scholar 

  16. K. Siposova, M. Kubovcikova, Z. Bednarikova, M. Koneracká, V. Zavisova, A. Antosova, P. Kopčanský, Z. Daxnerova, and Z. Gažová, Nanotechnology 23, 055101 (2012).

    Article  ADS  Google Scholar 

  17. M. V. Avdeev, V. L. Aksenov, Z. Gažová, L. Almásy, V. I. Petrenko, H. Gojzewski, A. V. Feoktystov, K. Šipošová, A. Antošová, M. Timko, and P. Kopčanský, J. Appl. Crystallogr. 46, 224 (2013).

    Article  Google Scholar 

  18. J. S. Pedersen, S. Hansen, and R. Bauer, Eur. Biophys J. 22, 379 (1994).

    Article  Google Scholar 

  19. D. V. Lebedev, D. M. Baitin, A. Kh. Islamov, A. I. Kuklin, V. Kh. Shalguev, V. A. Lanzov, and V. V. Isaev-Ivanov, FEBS Lett. 537, 182 (2003).

    Article  Google Scholar 

  20. A. Meister, S. Drescher, I. Mey, M. Wahab, G. Graf, V. M. Garamus, G. Hause, H.-J. Moegel, A. Janshoff, B. Dobner, and A. Blume, J. Phys. Chem. B 112, 4506 (2008).

    Article  Google Scholar 

  21. M. Sunde and C. Blake, Adv. Protein Chem. 50, 123 (1997).

    Article  Google Scholar 

  22. A. Nayak, M. Sorci, S. Krueger, and G. Belfort, Proteins 74, 556 (2009).

    Article  Google Scholar 

  23. V. M. Garamus, J. S. Pedersen, H. Kawasaki, and H. Maeda, Langmuir 16, 6431 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Petrenko.

Additional information

Original Russian Text © V.I. Petrenko, M.V. Avdeev, V.M. Garamus, M. Kubovcikova, Z. Gažová, K. Šipošová, L.A. Bulavin, L. Almásy, V.L. Aksenov, P. Kopcansky, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 1, pp. 129–133.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrenko, V.I., Avdeev, M.V., Garamus, V.M. et al. Structure of amyloid aggregates of lysozyme from small-angle X-ray scattering data. Phys. Solid State 56, 129–133 (2014). https://doi.org/10.1134/S1063783414010284

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414010284

Keywords

Navigation