Physics of the Solid State

, Volume 56, Issue 1, pp 134–137 | Cite as

Thermotropic phase transitions in model membranes of the outer skin layer based on ceramide 6

  • A. Yu. GruzinovEmail author
  • M. A. Kiselev
  • E. V. Ermakova
  • A. V. Zabelin
Biological Systems


The lipid intercellular matrix stratum corneum of the outer skin layer is a multilayer membrane consisting of a complex mixture of different lipids: ceramides, fatty acids, cholesterol, and its derivatives. The basis of the multilayer membrane is the lipid bilayer, i.e., a two-dimensional liquid crystal. Currently, it is known that the main way of substance penetration through the skin is the lipid matrix. The complexity of the actual biological system does not allow reliable direct study of its properties; therefore, system modeling is often used. Phase transitions in the lipid system whose composition simulates the native lipid matrix are studied by the X-ray synchrotron radiation diffraction method.


Ceramide Stratum Corneum Lipid Matrix Repeat Distance Stratum Corneum Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Mckie, G. M. Golden, J. E. McKie, and R. O. Potts, J. Pharm. Sci. 76, 25 (1987).CrossRefGoogle Scholar
  2. 2.
    K. R. Feingold, J. Lipid Res. 50, 41 (2009).CrossRefGoogle Scholar
  3. 3.
    M. A. Kiselev, Phys. Part. Nucl. 42(2), 302 (2011).CrossRefGoogle Scholar
  4. 4.
    P. Suortti and W. Thomlinson, Phys. Med. Biol. 48, R1 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed. (Wiley, New York, 1980).Google Scholar
  6. 6.
    N. Kucerka, Y. Liu, N. Chu, H. I. Petrache, S. Tristram-Nagle, and J. F. Nagle, Biophys. J. 88, 2626 (2005).CrossRefGoogle Scholar
  7. 7.
    H. Mantsch and R. McElhaney, Chem. Phys. Lipids 57, 213 (1991).CrossRefGoogle Scholar
  8. 8.
    D. Marsh, Chem. Phys. Lipids 57, 109 (1991).CrossRefGoogle Scholar
  9. 9.
    A. H. de Vries, S. Yefimov, A. E. Mark, and S. J. Marrink, Proc. Natl. Acad. Sci. USA 102, 5392 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    R. Winter, Biochim. Biophys. Acta 1595, 160 (2002).CrossRefGoogle Scholar
  11. 11.
    K. C. Madison, J. Invest. Dermatol. 121, 231 (2003).CrossRefGoogle Scholar
  12. 12.
    A. V. Rawlings, Int. J. Cosmet. Sci. 28, 79 (2006).CrossRefGoogle Scholar
  13. 13.
    M. Denda, J. Koyama, J. Hori, I. Horii, M. Takahashi, M. Hara, and H. Tagami, Arch. Dermatol. Res. 285, 415 (1993).CrossRefGoogle Scholar
  14. 14.
    J. Rogers, C. Harding, A. Mayo, J. Banks, and A. Rawlings, Arch. Dermatol. Res. 288, 765 (1996).CrossRefGoogle Scholar
  15. 15.
    M. J. Behne, N. P. Barry, K. M. Hanson, I. Aronchik, R. W. Clegg, E. Gratton, K. Feingold, W. M. Holleran, P. M. Elias, and T. M. Mauro, J. Invest. Dermatol. 120, 998 (2003).CrossRefGoogle Scholar
  16. 16.
    M. A. Kiselev, N. Y. Ryabova, A. M. Balagurov, S. Dante, T. Hauss, J. Zbytovska, S. Wartewig, and R. H. H. Neubert, Eur. Biophys. J. 34, 1030 (2005).CrossRefGoogle Scholar
  17. 17.
    M. A. Kiselev, E. V. Ermakova, N. Yu. Ryabova, O. V. Nayda, A. V. Zabelin, D. K. Pogorely, V. N. Korneev, and A. M. Balagurov, Crystallogr. Rep. 55(3), 466 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    T. C. Huang, H. Toraya, T. N. Blanton, and Y. Wu, J. Appl. Crystallogr. 26, 180 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. Yu. Gruzinov
    • 1
    Email author
  • M. A. Kiselev
    • 1
    • 2
  • E. V. Ermakova
    • 2
  • A. V. Zabelin
    • 1
  1. 1.National Research Centre “Kurchatov Institute,”MoscowRussia
  2. 2.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations