Advertisement

Physics of the Solid State

, Volume 56, Issue 1, pp 199–202 | Cite as

Neutron diffraction study of the interaction of iron with amorphous fullerite

  • P. A. Borisova
  • S. S. Agafonov
  • M. S. BlanterEmail author
  • V. A. Somenkov
Complementary Neutron and Synchrotron Investigations of Matter

Abstract

The amorphous fullerite C60 has been prepared by mechanical activation (grinding in a ball mill), and its interaction with iron during sintering of powders with 0–95 at % Fe has been studied. After sintering in the range 800–1200°C under a pressure of 70 MPa, the samples have nonequilibrium structures different from the structures of both annealed and quenched steels. In this case, the carbon phase, i.e., amorphous fullerite, undergoes a polyamorphous transition to amorphous graphite. It has also been shown that the interaction of amorphous fullerite with iron is weaker compared to crystalline fullerite or crystalline graphite.

Keywords

Ferrite Austenite Martensite Fullerene Neutron Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Garibay-Febles, H. A. Calderon, F. C. Robles-Hernandez, M. Umemoto, K. Masuyama, and J. G. Gabanas-Moreno, Mater. Manuf. Processes 15, 547 (2000).CrossRefGoogle Scholar
  2. 2.
    P. Tchernogorova, O. A. Bannykh, V. M. Blinov, E. I. Drozdova, A. A. Dityat’ev, and N. N. Mel’nik, Mater. Sci. Eng., A 299, 136 (2001).CrossRefGoogle Scholar
  3. 3.
    O. Chernogorova, E. Drozdova, I. Ovchinnikova, A. V. Soldatov, and E. Ekimov, J. Appl. Phys. 111, 112601 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    L-X. Pang, K-N. Sun, S. Ren, C. Sun, R-H. Fan, and Z-H. Lu, Mater. Sci. Eng., A 447, 146 (2007).CrossRefGoogle Scholar
  5. 5.
    F. C. Robles-Hernandez and H. A. Calderon, JOM 62, 63 (2010).CrossRefGoogle Scholar
  6. 6.
    V. A. Glebov, A. S. Bakulina, I. V. Efremov, I. V. Shchetinin, Yu. D. Yagodkin, A. M. Glezer, A. Yu. Rashkovskii, and D. L. Vainshtein, Metalloved. Term. Obrab. Met., No. 7, 30 (2010).Google Scholar
  7. 7.
    F. A. Khalid, O. Beffort, U. E. Klotz, B. A. Keller, P. Gasser, and S. Vaucher, Acta Mater. 51, 4575 (2003).CrossRefGoogle Scholar
  8. 8.
    T. Tokunaga, K. Kaneko, K. Sato, and Z. Horita, Scr. Mater. 58, 735 (2008).CrossRefGoogle Scholar
  9. 9.
    S. S. Agafonov, V. P. Glazkov, I. F. Kokin, and V. A. Somenkov, Phys. Solid State 52(6), 1329 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    P. A. Borisova, S. S. Agafonov, V. P. Glazkov, N. P. D’yakonova, and V. A. Somenkov, Crystallogr. Rep. 56(7), 1123 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    S. S. Bukalov, L. A. Mikhalitsyn, Ya. V. Zubavichus, L. A. Leites, and Yu. N. Novikov, Ross. Khim. Zh. L, 83 (2006).Google Scholar
  12. 12.
    G. V. Kurdyumov, L. M. Utevskii, and Z. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian].Google Scholar
  13. 13.
    L. Cheng, A. Bottger, Th. H. Keijser, and E. J. Mittemeijer, Scr. Metall. Mater. 24, 509 (1990).CrossRefGoogle Scholar
  14. 14.
    N. Ridley, H. Stuart, and L. Zwell, Trans. Metall. Soc. AIME 245, 1834 (1969).Google Scholar
  15. 15.
    N. Ridley and H. Stuart, Met. Sci. J. 4, 219 (1970).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • P. A. Borisova
    • 1
  • S. S. Agafonov
    • 1
  • M. S. Blanter
    • 2
    Email author
  • V. A. Somenkov
    • 1
  1. 1.National Research Centre “Kurchatov Institute,”MoscowRussia
  2. 2.Moscow State University of Instrumental Engineering and Computer ScienceMoscowRussia

Personalised recommendations