Skip to main content
Log in

Dynamics of the processes of electron-hole recombination and capture of charge carriers in anatase doped with boron, carbon, or nitrogen

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The first-principles investigation of the processes of nonradiative recombination of electron-hole pairs and binding of excited charge carriers with impurity atoms in anatase doped with boron, carbon, or nitrogen has been carried out using the perturbation theory method. The perturbation is provided by a dynamically screened electron-electron interaction potential calculated in the random phase approximation. It has been shown that the most probable processes occurring upon doping with boron and carbon are exchange processes in which electrons are bound with the impurity atom, whereas the most probable processes observed upon doping with nitrogen are exchange processes in which holes are bound with the impurity atom. These processes occur within a time interval of shorter than 2 fs. The next in probability are the processes of energy losses by unbound electrons and holes due to the generation of phonons. For the case of nitrogen doping, the time of this process is estimated at approximately 300 fs. For excitons formed in this case, the luminescence photon energy and the binding energy of electrons or holes with the impurity atom are estimated. The agreement between the calculated data and the results of experiments on the photocatalysis proceeding on the surface of N-doped anatase is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yamamoto, T. Kido, T. Goto, Y. Chen, T. Yao, and A. Kasuya, Appl. Phys. Lett. 75, 469 (1999).

    Article  ADS  Google Scholar 

  2. C.-K. Sun, S.-Z. Sun, K.-H. Lin, K. Y.-J. Zhang, H.-L. Liu, S.-C. Liu, and J.-J. Wu, Appl. Phys. Lett. 87, 023106 (2005).

    Article  ADS  Google Scholar 

  3. X. Wen, J. Davis, D. McDonald, L. Dao, P. Hannaford, V. Coleman, H. Tan, S. Jagadish, K. Koike, and S. Sasa, Nanotechnology 18, 315403 (2007).

    Article  ADS  Google Scholar 

  4. E. Hendry, M. Koeberg, and M. Bonn, Phys. Rev. B: Condens. Matter 76, 045214 (2007).

    Article  ADS  Google Scholar 

  5. Q. Shen, K. Katayama, M. Yamaguchi, T. Sawada, and T. Toyoda, Thin Solid Films 486, 15 (2005).

    Article  ADS  Google Scholar 

  6. Q. Shen, K. Katayama, T. Sawada, M. Yamaguchi, Y. Kumagai, and T. Toyoda, Chem. Phys. Lett. 419(4–6), 464 (2006).

    Article  ADS  Google Scholar 

  7. V. Zhukov, P. Echenique, and E. Chulkov, Phys. Rev. B: Condens. Matter 82, 094302 (2010).

    Article  ADS  Google Scholar 

  8. V. Zhukov and E. Chulkov, J. Phys.: Condens. Matter 22, 435802 (2010).

    Article  ADS  Google Scholar 

  9. V. Zhukov, V. Tyuterev, and E. Chulkov, J. Phys.: Condens. Matter 24, 405802 (2012).

    Article  Google Scholar 

  10. V. P. Zhukov and V. G. Tyuterev, Phys. Solid State 54(11), 2173 (2012).

    Article  ADS  Google Scholar 

  11. M. Henderson, Surf. Sci. Rep. 66(6-7), 185 (2011).

    Article  ADS  Google Scholar 

  12. F. Bertram, J. Christen, A. Dadgar, and A. Krost, Appl. Phys. Lett. 90, 041917 (2007).

    Article  ADS  Google Scholar 

  13. A. Amtout and R. Lionelli, Phys. Rev. B: Condens. Matter 51(11), 6842 (1995).

    Article  ADS  Google Scholar 

  14. T. Sekiya, M. Tasaki, K. Wakabayashi, and S. Kurita, J. Lumin. 108(1–4), 69 (2004).

    Article  Google Scholar 

  15. K. Fujihara, S. Izumi, T. Ohno, and M. Matsumura, J. Photochem. Photobiol., A 132, 99 (2000).

    Article  Google Scholar 

  16. H. Ghosh and S. Adhikari, Langmuir 17, 4129 (2001).

    Article  Google Scholar 

  17. T. Tachikawa, S. Tojo, M. Fujitsuka, T. Sekino, T. Majima, J. Phys. Chem. B 110, 14055 (2006).

    Article  Google Scholar 

  18. X. Yang and N. Tamai, Phys. Chem. Chem. Phys. 3, 3393 (2001).

    Article  Google Scholar 

  19. Y. Tamaki, A. Furube, M. Murai, K. Naga, R. Katoh, and M. Tachiya, Phys. Chem. Chem. Phys. 9(12), 1453 (2007).

    Article  Google Scholar 

  20. V. Zhukov and E. Chulkov, Phys. Status Solidi 249(5), 1063 (2012).

    Article  Google Scholar 

  21. R. Loudon, The Quantum Theory of Light (Oxford University Press, New York, 1983).

    Google Scholar 

  22. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science (Washington) 293, 269 (2001).

    Article  Google Scholar 

  23. V. N. Krasil’nikov, A. P. Shtin, O. V. Gyrdasova, E. V. Polyakov, L. Yu. Buldakova, M. Yu. Yanchenko, V. M. Zainullina, and V. P. Zhukov, Russ. J. Inorg. Chem. 55(8), 1184 (2010).

    Article  Google Scholar 

  24. A. R. Beattie and R. T. Landsberg. Proc. R. Soc. London, Ser. A 249, 16 (1959).

    Article  ADS  Google Scholar 

  25. S. Picozzi, R. Asahi, and A. Freeman, J. Comput. Electron. 2, 197 (2003).

    Article  Google Scholar 

  26. F. Aryasetiawan and O. Gunnarsson, Phys. Rev. B: Condens. Matter 49, 16214 (1994).

    Article  ADS  Google Scholar 

  27. F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).

    Article  ADS  Google Scholar 

  28. V. P. Zhukov, E. Chulkov, and P. Echenique, Phys. Rev. B: Condens. Matter 65, 115116 (2002).

    Article  ADS  Google Scholar 

  29. V. P. Zhukov, E. Chulkov, and P. Echenique, Phys. Rev. Lett. 93(9), 096401 (2004).

    Article  ADS  Google Scholar 

  30. N. Feng, A. Zheng, Q. Wang, P. Ren, X. Gao, S.-B. Liu, Z. Shen, T. Chen, and F. Deng, J. Phys. Chem. C 115, 2709 (2011).

    Article  Google Scholar 

  31. http://www.quantum-espresso.org; http://www.pwscf.org (2010).

  32. M. Murakami, Y. Matsumoto, K. Nakajima, T. Makino, Y. Segawa, T. Chikyow, P. Ahmet, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 78, 2664 (2001).

    Article  ADS  Google Scholar 

  33. H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys. Chem. B 107(23), 5483 (2003).

    Article  Google Scholar 

  34. M. Mrowetz, W. Balcerski, A. Colussi, and M. Hoffmann, J. Phys. Chem. B 108(45), 17269 (2004).

    Article  Google Scholar 

  35. H. Fu, L. Zhang, S. Zhang, Y. Zhu, and J. Zhao, J. Phys. Chem. B 110(7), 3061 (2006).

    Article  Google Scholar 

  36. T. Tachikawa, M. Fujitsuka, and T. Majima, J. Phys. Chem. C 111, 5259 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zhukov.

Additional information

Original Russian Text © V.P. Zhukov, E.V. Chulkov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 9, pp. 1697–1705.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukov, V.P., Chulkov, E.V. Dynamics of the processes of electron-hole recombination and capture of charge carriers in anatase doped with boron, carbon, or nitrogen. Phys. Solid State 55, 1808–1816 (2013). https://doi.org/10.1134/S1063783413090345

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413090345

Keywords

Navigation