Skip to main content
Log in

Structural, electronic, mechanical, and magnetic properties and relative stability of polymorphic modifications of ReN2 from Ab initio calculation data

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A comparative analysis of the structural, electronic, mechanical, and magnetic properties and relative stability has been carried out in terms of ab initio calculations for four possible polymorphic modifications of rhenium dinitride, whose nonmetallic lattices contain both individual nitrogen atoms and dimers N2. It has been found that the recently synthesized hexagonal polymorph ReN2 (structural type 2H-MoS2) is a weak d 0 magnet in which the magnetic state is formed due to spin splitting of N 2p states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Goldschmidt, Interstitial Alloys (Butterworths, London, 1967; Mir, Moscow, 1971).

    Book  Google Scholar 

  2. L. Toth, Transition Metal Carbides and Nitrides (Academic, New York, 1971; Mir, Moscow, 1974).

    Google Scholar 

  3. A. L. Ivanovskii, V. P. Zhukov, and V. A. Gubanov, Electronic Structure of Refractory Carbides and Nitrides (Nauka, Moscow, 1990; Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  4. The Physics and Chemistry of Carbides, Nitrides and Borides, Ed. by R. Freer (Kluwer, Dordrecht, 1990).

    Google Scholar 

  5. The Chemistry of Transition Metal Carbides and Nitrides, Ed. by S. T. Oyama (Blacklie, London, 1996).

    Google Scholar 

  6. E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H. K. Mao, and R. L. Hemley, Nat. Mater. 3, 294 (2004).

    Article  ADS  Google Scholar 

  7. S. Ono, T. Kikegawa, and Y. Ohishi, Solid State Commun. 133, 55 (2005).

    Article  ADS  Google Scholar 

  8. J. C. Crowhurst, A. F. Goncharov, B. Sadigh, C. L. Evans, P. G. Morrall, J. L. Ferreira, and A. J. Nelson, Science (Washington) 311, 1275 (2006).

    Article  ADS  Google Scholar 

  9. A. F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R. J. Hemley, and H. K. Mao, Phys. Rev. Lett. 96, 155501 (2006).

    Article  ADS  Google Scholar 

  10. M. G. Moreno-Armenta, J. Diaz, A. Martinez-Ruiz, and G. Soto, J. Phys. Chem. Solids 68, 1989 (2007).

    Article  ADS  Google Scholar 

  11. J. C. Crowhurst, A. F. Goncharov, B. Sadigh, J. M. Zaug, D. Aberg, Y. Meng, and V. B. Prakapenka, J. Mater. Res. 23, 1 (2008).

    Article  ADS  Google Scholar 

  12. A. L. Ivanovskii, Usp. Khim. 78, 328 (2009).

    Article  Google Scholar 

  13. A. Friedrich, B. Winkler, L. Bayarjargal, W. Morgenroth, E. A. Juarez-Arellano, V. Milman, K. Refson, M. Kunz, and K. Chen, Phys. Rev. Lett. 105, 085504 (2010).

    Article  ADS  Google Scholar 

  14. V. V. Bannikov, I. R. Shein, N. I. Medvedeva, and A. L. Ivanovskii, J. Magn. Magn. Mater. 321, 3624 (2009).

    Article  ADS  Google Scholar 

  15. V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Phys. Status Solidi B 248, 1369 (2011).

    Article  ADS  Google Scholar 

  16. X. F. Hao, Y. H. Xu, Z. P. Li, L. Wang, F. M. Gao, and D. B. Xiao, Phys. Status Solidi B 248, 2107 (2011).

    Google Scholar 

  17. Y. C. Liang, X. Yuan, and W. Q. Zhang, J. Appl. Phys. 109, 053501 (2011).

    Article  ADS  Google Scholar 

  18. A. L. Ivanovskii, Sverkhtverd. Mater., No. 2, 3 (2012).

    Google Scholar 

  19. Y. L. Li and Z. Zeng, Solid State Commun. 149, 1591 (2009).

    Article  ADS  Google Scholar 

  20. A. T. A. Meenaatci, R. Rajeswarapalanichamy, and K. Iyakutti, Physica B (Amsterdam) 406, 3303 (2011).

    Article  ADS  Google Scholar 

  21. E. Zhao and Z. Wu, Comput. Mater. Sci. 44, 531 (2008).

    Article  MathSciNet  Google Scholar 

  22. Y. Li and Z. Zeng, Chem. Phys. Lett. 474, 93 (2009).

    Article  ADS  Google Scholar 

  23. J. Zhou, Z. Sun, and R. Ahuja, J. Alloys Compd. 472, 425 (2009).

    Article  Google Scholar 

  24. X. P. Du, Y. X. Wang, and V. C. Lo, Phys. Lett. A 374, 2569 (2010).

    Article  ADS  Google Scholar 

  25. G. Soto, Comput. Mater. Sci. 61, 1 (2012).

    Article  Google Scholar 

  26. Y. Wang, T. Yao, J. L. Yao, J. Zhang, and H. Gou, Phys. Chem. Chem. Phys. 15, 183 (2013).

    Article  Google Scholar 

  27. S. Aydin, O. Y. Ciftci, and A. Tatar, J. Mater. Res. 27, 1705 (2012).

    Article  Google Scholar 

  28. F. Kawamura, H. Yusa, and T. Taniguchi, Appl. Phys. Lett. 100, 251910 (2012).

    Article  ADS  Google Scholar 

  29. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993).

    Article  ADS  Google Scholar 

  30. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    Article  ADS  Google Scholar 

  31. G. Kresse and J. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999).

    Article  ADS  Google Scholar 

  32. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  33. A. L. Ivanovskii, Prog. Mater. Sci. 57, 184 (2012).

    Article  Google Scholar 

  34. Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, Phys. Rev. B: Condens. Matter 76, 054115 (2007).

    Article  ADS  Google Scholar 

  35. I. R. Shein, V. S. Kiiko, Yu. N. Makurin, M. A. Gorbunova, and A. L. Ivanovskii, Phys. Solid State 49(6), 1067 (2007).

    Article  ADS  Google Scholar 

  36. S. F. Pugh, Philos. Mag. 45, 823 (1953).

    Google Scholar 

  37. S. I. Ranganathan and M. Ostoja-Starzewshi, Phys. Rev. Lett. 101, 055504 (2008).

    Article  ADS  Google Scholar 

  38. J. J. Gilman, Chemistry and Physics of Mechanical Hardness (Wiley, Hoboken, New Jersey, 2009).

    Book  Google Scholar 

  39. A. L. Ivanovskii, Int. J. Refract. Met. Hard. Mater. 36, 179 (2013).

    Article  Google Scholar 

  40. X. Jiang, J. Zhao, A. Wu, Y. Bai, and X. J. Jiang, J. Phys.: Condens. Matter 22, 315503 (2010).

    Article  ADS  Google Scholar 

  41. J. M. D. Coey, Solid State Sci. 7, 660 (2005).

    Article  ADS  Google Scholar 

  42. A. L. Ivanovskii, Phys.-Usp. 50(10), 1031 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ivanovskii.

Additional information

Original Russian Text © I.R. Shein, A.N. Enyashin, A.L. Ivanovskii, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 9, pp. 1709–1713.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shein, I.R., Enyashin, A.N. & Ivanovskii, A.L. Structural, electronic, mechanical, and magnetic properties and relative stability of polymorphic modifications of ReN2 from Ab initio calculation data. Phys. Solid State 55, 1821–1825 (2013). https://doi.org/10.1134/S106378341309028X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341309028X

Keywords

Navigation