Skip to main content
Log in

Physical processes in high-temperature superconductors at the interface between the vortex-filled and meissner regions

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A technique has been proposed for investigating the magnetic microstate of high-temperature superconductors with a simultaneous analysis of the crystalline microstate of the sample with the aim of elucidating the specific features of the interaction between the crystalline and magnetic microstructures of polycrystalline high-temperature superconductors. Qualitatively new results have been obtained for samples with different microstructures. In particular, it has been found that the magnetic field dependences of the trapped magnetic flux density B tr(H 0) of polycrystalline and epitaxial films of high-temperature superconductors exhibit regular steps for both increasing and decreasing magnetic fields. The obtained results have demonstrated that, in strong magnetic fields, the studied epitaxial films, as well as bulk and thin-film polycrystalline high-temperature superconductors, “break down” into single domains, crystallites, and subcrystallites with different demagnetization factors. It has been revealed that the dependences B tr(H 0) also exhibit steps due to the simultaneous penetration of vortices into crystallites of approximately the same sizes and into more regularly arranged subcrystallites. As the quality of the samples increases, these steps become more pronounced because of the increase in the short-range order. The absence of steps in the dependence B tr(H 0) of the polycrystalline bulk samples clearly demonstrates the absence of long-range order in these samples. It is the vitreousness of the crystallographic microstructure of high-temperature superconductors which is responsible for the observed transformations in the vortex system. The similarity of the results obtained for samples with different microstructures indicates that the penetration (escape), distribution, and trapping of the magnetic flux in these samples occur through a universal mechanism. It has been found that the polycrystalline high-temperature superconductors are actually multi-step rather than two-step systems. It has been shown that the vitreousness of the microstructure of high-temperature superconductors and the presence of close-packed twin boundaries in samples lead to the penetration of a magnetic flux in the form of hypervortices into the sample and cause the formation of a superconducting glass state on a different physical basis as compared to the Ebner-Stroud model of a granulated glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Malozemoff, Physical Properties of High Temperature Superconductors, Ed. by D. M. Ginsberg (World Scientific, Singapore, 1989; Mir, Moscow, 1990).

  2. V. V. Schmidt, The Physics of Superconductors: Introduction to Fundamentals and Applications (MTsNMO, Moscow, 2000; Springer-Verlag, Berlin, 2005).

    Google Scholar 

  3. V. M. Pan, Low Temp. Phys. 32(8/9), 783 (2006).

    Article  ADS  Google Scholar 

  4. A. S. Mel’nikov, Yu. N. Nozdrin, I. D. Tokman, and P. P. Vysheslavtsev, Phys. Rev. B: Condens. Matter 58, 11672 (1998).

    Article  ADS  Google Scholar 

  5. M. W. Rupich, U. Schoop, D. T. Verebelyi, C. Thiem, and W. Zhang, IEEE Trans. Appl. Supercond. 13(2), 2458 (2003).

    Article  Google Scholar 

  6. M. S. Hatzistergos, H. Efstathiadis, E. Lifshin, A. E. Kaloyeros, J. L. Reeves, V. Selvamanicham, L. P. Allen, and R. MacCrimon, IEEE Trans. Appl. Supercond. 13(2), 2470 (2003).

    Article  Google Scholar 

  7. A. A. Zhukov and V. V. Moshchalkov, Sverkhprovodimost: Fiz., Khim., Tekh. 4, 850 (1991).

    Google Scholar 

  8. E. Z. Meilikhov, Phys.-Usp. 36(3), 129 (1993).

    Article  ADS  Google Scholar 

  9. Chemistry of High-Temperature Superconductors, Ed. by D. L. Nelson, M. S. Whittingham, and T. F. George (American Chemical Society, Washington, 1987; Mir, Moscow, 1988).

    Google Scholar 

  10. E. B. Sonin, JETP Lett. 47(8), 496 (1988).

    ADS  Google Scholar 

  11. J. R. Clem, Physica C (Amsterdam) 153–155, 50 (1988).

    Article  Google Scholar 

  12. G. Deutsher, Physica C (Amsterdam) 153–155, 15 (1988).

    Article  Google Scholar 

  13. Kh. R. Rostami, in Program and Abstracts of the 23rd International Conference on Low Temperature Physics (LT-23), Hiroshima, Japan, August 20–27, 2002, p. 312.

  14. Kh. R. Rostami, in Program and Abstracts of the 20th International Conference on Magnet Technology (MT-20), Philadelphia, Pennsylvania, United States, August 27–31, 2007, No. 5105.

  15. Kh. R. Rostami, in Program and Abstracts of the 20th International Symposium on Superconductivity (ISS), Tsukuba, Japan, August 27–31, 2007, PCP-45, PCP46, p. 77.

  16. A. Sulpice, P. Lejay, R. Tournier, and J. Chaussy, Europhys. Lett. 7, 365 (1988).

    Article  ADS  Google Scholar 

  17. S. Nakahara, T. Boone, M. F. Yan, G. J. Fisanick, and D. W. Jonson, Jr., J. Appl. Phys. 63, 451 (1988).

    Article  ADS  Google Scholar 

  18. Kh. R. Rostami, JETP 101(4), 653 (2005).

    Article  ADS  Google Scholar 

  19. Kh. R. Rostami, JETP 107(4), 612 (2008).

    Article  ADS  Google Scholar 

  20. Kh. R. Rostami, Int. J. Mod. Phys. B 23, 4277 (2009).

    Article  ADS  Google Scholar 

  21. V. N. Gubankov and Kh. R. Rostami, Phys. Solid State 43(7), 1210 (2001).

    Article  ADS  Google Scholar 

  22. Kh. R. Rostami, Low Temp. Phys. 27(1), 79 (2001).

    Article  ADS  Google Scholar 

  23. L. M. Fisher, A. V. Kalinov, L. F. Voloshin, and V. A. Yampol’skii, Phys. Rev. B: Condens. Matter 71, 140503 (2005).

    Article  ADS  Google Scholar 

  24. D. Daghero, P. Mazzett, A. Stepanescu, and A. Masoero, Phys. Rev. B: Condens. Matter 66, 184514 (2002).

    Article  ADS  Google Scholar 

  25. D. Zola, M. Polichetti, C. Senatore, and S. Pace, Phys. Rev. B: Condens. Matter 70, 224504 (2004).

    Article  ADS  Google Scholar 

  26. Ch. Jooss, J. Albrecht, H. Kuhn, S. Leonhardt, and H. Kronmüller, Rep. Prog. Phys. 65, 651 (2002).

    Article  ADS  Google Scholar 

  27. D. A. Balaev, A. A. Bykov, S. V. Semenov, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 53(5), 922 (2011).

    Article  ADS  Google Scholar 

  28. T. V. Sukhareva and V. A. Finkel, Phys. Solid State 54(3), 451 (2012).

    Article  ADS  Google Scholar 

  29. L. Ya. Vinnikov, D. E. Boinagrov, V. N. Zverev, I. S. Veshunov, and J. Karpinski, JETP 109(2), 280 (2009).

    Article  ADS  Google Scholar 

  30. A. A. Kartamyshev, E. P. Krasnoperov, Yu. D. Kuroedov, O. L. Polushchenko, and N. A. Nizhelskiy, Tech. Phys. Lett. 35(9), 796 (2009).

    Article  ADS  Google Scholar 

  31. V. N. Zabenkin, L. A. Aksel’rod, A. A. Vorob’ev, G. P. Gordeev, and S. A. Churin, JETP Lett. 70(12), 787 (1999).

    Article  ADS  Google Scholar 

  32. Kh. R. Rostami, in Proceedings of the 4th International Conference on Magneto-Science (ICMS-2011), Shanghai, China, October 9–12, 2011, www.mag-sci2011com

  33. Kh. R. Rostami, Instrum. Exp. Tech. 47(6), 809 (2004).

    Article  MathSciNet  Google Scholar 

  34. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).

    Article  ADS  Google Scholar 

  35. M. S. Afanas’ev, A. N. Bazlov, V. N. Gubankov, I. M. Kotelyanskii, and V. A. Shakhunov, Radiotekhnika 10, 88 (2005).

    Google Scholar 

  36. P. B. Mozhaev, G. A. Ovsyannikov, A. Kyule, I. L. Skov, and P. Bodin, Sverkhprovodimost: Fiz., Khim., Tech. 8, 288 (1995).

    Google Scholar 

  37. T. Scherer, P. Marienhoff, R. Herwig, N. Neuhaus, and W. Jutzi, Physica C (Amsterdam) 197, 79 (1992).

    Article  ADS  Google Scholar 

  38. Kh. R. Rostami, V. V. Mantorov, and V. I. Omel’chenko, Low Temp. Phys. 22(7), 565 (1996).

    ADS  Google Scholar 

  39. H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys. 74, 485 (2002).

    Article  ADS  Google Scholar 

  40. Cao Xiaowen, Han Guchang, and Zhang Tingyu, Mod. Phys. Lett. B 1(9–10), 383 (1988).

    Google Scholar 

  41. H. Dersch and G. Blatter, Phys. Rev. B: Condens. Matter 38, 11391 (1988).

    Article  ADS  Google Scholar 

  42. E. Z. Meilikhov, Sverkhprovodimost: Fiz., Khim., Tech. 2, 5 (1989).

    Google Scholar 

  43. M. Tinkham Introduction to Superconductivity (McGraw-Hill, New York, 1975; Atomizdat, Moscow, 1980).

    Google Scholar 

  44. L. Ya. Vinnikov, I. V. Grigor’eva, L. A. Gurevich, and A. E. Koshelev, Sverkhprovodimost: Fiz., Khim., Tech. 3, 1434 (1990).

    Google Scholar 

  45. W. K. Kwok, U. Welp, G. W. Crabtree, K. G. Vandervoort, R. Hulscher, and J. Z. Liu, Phys. Rev. Lett. 64, 966 (1990).

    Article  ADS  Google Scholar 

  46. A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982; Mir, Moscow, 1984).

    Book  Google Scholar 

  47. Kh. R. Rostami, in Program and Abstracts of the 25th International Conference on Low Temperature Physics (LT-25), Amsterdam, The Netherlands, August 6–13, 2008, p. 45.

  48. A. Campbell and J. Evetts, Critical Currents in Superconductors (Taylor and Francis, London, 1972; Mir, Moscow, 1975).

    Google Scholar 

  49. V. K. Vlasko-Vlasov, M. V. Indenbom, V. I. Nikitenko, Yu. A. Osip’yan, A. A. Polyanskii, and R. L. Prozorov, Sverkhprovodimost: Fiz., Khim., Tech. 5, 1637 (1992).

    Google Scholar 

  50. V. F. Khirnyi and A. A. Kozlovskii, Phys.-Usp. 47(3), 273 (2004).

    Article  ADS  Google Scholar 

  51. A. S. Krasil’nikov, L. G. Mamsurova, K. K. Pukhov, N. G. Trusevich, and L. G. Shcherbakova, JETP 82(3), 542 (1996).

    ADS  Google Scholar 

  52. A. M. Balagurov, L. G. Mamsurova, I. A. Bobrikov, To Thanh Loan, V. Yu. Pomjakushin, K. S. Pigalskiy, N. G. Trusevich, and A. A. Vishnev, JETP 114(6), 1001 (2012).

    Article  ADS  Google Scholar 

  53. A. I. Olemskoi and A. Ya. Flat, Phys.-Usp. 36(12), 1087 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  54. Y. I. Kuzmin, J. Low Temp. Phys. 130,3/4, 261 (2003).

    Article  ADS  Google Scholar 

  55. A. N. Herega, N. G. Drik, and A. P. Ugol’nikov, Phys.-Usp. 55(5), 519 (2012).

    Article  ADS  Google Scholar 

  56. S. V. Bozhokin and D. A. Parshin, Fractals and Multifractals (Regular and Chaotic Dynamics, Izhevsk, 2001) [in Russian].

    Google Scholar 

  57. I. M. Sokolov, Sov. Phys.-Usp. 29(10), 924 (1986).

    Article  ADS  Google Scholar 

  58. D. Ben-Avraham, S. Havlin, and D. Movshovitz, Philos. Mag. B 50, 297 (1984).

    Article  ADS  Google Scholar 

  59. C. Ebner and D. Stroud, Phys. Rev. B: Condens. Matter 31(1), 165 (1985).

    Article  ADS  Google Scholar 

  60. G. Deutscher and K. A. Müller, Phys. Rev. Lett. 59(15), 1745 (1987).

    Article  ADS  Google Scholar 

  61. G. L. Dorofeev, Yu. D. Kuroedov, and S. V. Frolov, Sverkhprovodimost: Fiz., Khim., Tech. 4, 737 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. R. Rostami.

Additional information

Original Russian Text © Kh.R. Rostami, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 9, pp. 1677–1690.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostami, K.R. Physical processes in high-temperature superconductors at the interface between the vortex-filled and meissner regions. Phys. Solid State 55, 1786–1801 (2013). https://doi.org/10.1134/S1063783413090278

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413090278

Keywords

Navigation