Skip to main content
Log in

Structure-mediated transition in the behavior of elastic and inelastic properties of beach tree bio-carbon

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Microstructural characteristics and amplitude dependences of the Young modulus E and of internal friction (logarithmic decrement δ) of bio-carbon matrices prepared from beech tree wood at different carbonization temperatures T carb ranging from 600 to 1600°C have been studied. The dependences E(T carb) and δ(T carb) thus obtained revealed two linear regions of increase of the Young modulus and of decrease of the decrement with increasing carbonization temperature, namely, ΔEAΔT carb and Δδ ∼ BΔT carb, with A ≈ 13.4 MPa/K and B ≈ −2.2 × 10−6 K−1 for T carb < 1000°C and A ≈ 2.5 MPa/K and B ≈ −3.0 × 10−7 K−1 for T carb > 1000°C. The transition observed in the behavior of E(T carb) and δ(T carb) at T carb = 900–1000°C can be assigned to a change of sample microstructure, more specifically, a change in the ratio of the fractions of the amorphous matrix and of the nanocrystalline phase. For T carb < 1000°C, the elastic properties are governed primarily by the amorphous matrix, whereas for T carb > 1000°C the nanocrystalline phase plays the dominant part. The structurally induced transition in the behavior of the elastic and microplastic characteristics at a temperature close to 1000°C correlates with the variation of the physical properties, such as electrical conductivity, thermal conductivity, and thermopower, reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Byrne and D. C. Nagle, Carbon 35, 267 (1997).

    Article  Google Scholar 

  2. P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).

    Article  Google Scholar 

  3. C. Zollfrank and H. Siber, J. Eur. Ceram. Soc. 24, 495 (2004).

    Article  Google Scholar 

  4. A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gon-zalez, C. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1(1), 56 (2004).

    Article  Google Scholar 

  5. F. M. Varela-Feria, PhD Thesis (Universidad de Sevilla, Sevilla, Spain, 2004).

  6. A. K. Kercher and D. C. Nagle, Carbon 40, 1321 (2002).

    Article  Google Scholar 

  7. V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).

    Article  Google Scholar 

  8. V. V. Shpeizman, N. N. Peschanskaya, T. S. Orlova, and B. I. Smirnov, Phys. Solid State 51(12), 2458 (2009).

    Article  Google Scholar 

  9. T. E. Wilkes, J. Y. Pastor, J. Liorca, and K. T. Faber, J. Mater. Res. 23, 1732 (2008).

    Article  ADS  Google Scholar 

  10. T. E. Wilkes, M. L. Young, R. E. Sepulveda, D. C. Dunand, and K. T. Faber, Scr. Mater. 55, 1083 (2006).

    Article  Google Scholar 

  11. B. K. Kardashev, T. S. Orlova, B. I. Smirnov, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50(10), 1882 (2008).

    Article  ADS  Google Scholar 

  12. P. Sebo and P. Stefanik, Int. J. Mater. Prod. Technol. 18, 141 (2003).

    Google Scholar 

  13. J. Kovacik and J. Bielek, Scr. Mater. 35, 151 (1996).

    Article  Google Scholar 

  14. L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, and K. T. Faber, Phys. Solid State 52(7), 1348 (2010).

    Article  ADS  Google Scholar 

  15. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48(3), 441 (2006).

    Article  ADS  Google Scholar 

  16. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50(12), 2245 (2008).

    Article  ADS  Google Scholar 

  17. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 51(10), 2023 (2009).

    Article  ADS  Google Scholar 

  18. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52(6), 1115 (2010).

    Article  ADS  Google Scholar 

  19. A. K. Kercher and D. C. Nagle, Carbon 41, 15 (2003).

    Article  Google Scholar 

  20. V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martínez-Fernandez, Phys. Solid State 53(2), 276 (2011).

    Article  ADS  Google Scholar 

  21. V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51(11), 2247 (2009).

    Article  ADS  Google Scholar 

  22. I. A. Smirnov, B. I. Smirnov, T. S. Orlova, Cz. Sulkovski, H. Misiorek, A. Jezowski, and J. Mucha, Phys. Solid State 53(11), 2244 (2011).

    Article  ADS  Google Scholar 

  23. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, and M. C. Vera, Phys. Solid State 53(11), 2398 (2011).

    Article  ADS  Google Scholar 

  24. B. K. Kardashev, T. S. Orlova, B. I. Smirnov, T. E. Wilkes, and K. T. Faber, Phys. Solid State 51(12), 2463 (2009).

    Article  Google Scholar 

  25. B. K. Kardashev, Yu. A. Burenkov, B. I. Smirnov, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 47(5), 886 (2005).

    Article  ADS  Google Scholar 

  26. B. K. Kardashev, T. S. Orlova, B. I. Smirnov, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 52(10), 2076 (2010).

    Article  ADS  Google Scholar 

  27. M. A. Bautista, A. R. de Arellano-Lopez, J. Martnez-Fernandez, A. Bravo-Leon, and J. M. Lopez-Cepero, Int. J. Refract. Met. Hard Mater. 27, 431 (2009).

    Article  Google Scholar 

  28. F. Tunistra and J. L. Koenig, J. Chem. Phys. 53(3), 1126 (1970).

    Article  ADS  Google Scholar 

  29. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Inelasticity of Crystals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  30. M. T. Johnson and K. T. Faber, J. Mater. Res. 26, 18 (2011).

    Article  ADS  Google Scholar 

  31. J. Martínez-Fernandez, A. Munoz, A. R. de Arellano-Lopez, F. M. Varela-Feria, A. Domínguez-Rodríguez, and M. Singh, Acta Mater. 51, 3259 (2003).

    Article  Google Scholar 

  32. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Carbon 43, 1731 (2005).

    Article  Google Scholar 

  33. J. G. Hernandez, I. Hernandez-Calderon, C. A. Luengo, and R. Tsu, Carbon 20, 201 (1982).

    Article  Google Scholar 

  34. B. K. Kardashev, B. I. Smirnov, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Mater. Sci. Eng., A 442, 444 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Orlova.

Additional information

Original Russian Text © B.K. Kardashev, T.S. Orlova, B.I. Smirnov, A. Gutierrez, J. Ramirez-Rico, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 9, pp. 1771–1777.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kardashev, B.K., Orlova, T.S., Smirnov, B.I. et al. Structure-mediated transition in the behavior of elastic and inelastic properties of beach tree bio-carbon. Phys. Solid State 55, 1884–1891 (2013). https://doi.org/10.1134/S1063783413090151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413090151

Keywords

Navigation