Skip to main content
Log in

Radiation resistance of LaPO4 (monazite structure) and YbPO4 (zircon structure) from data of computer simulation

  • Lattice Dynamics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The radiation resistance of the monazite LaPO4 and the compound YbPO4 (zircon structure type) has been investigated using the computer simulation. The number of Frenkel pairs, which are formed in the structure of these minerals after the passage of a primary knock-on thorium atom with an energy of 30 keV, has been calculated by the molecular dynamics method. The formation of Frenkel pairs and their recombination in the motion of recoil nuclei in the structure of the studied minerals have been discussed. It has been shown that the probability of the “survival” of Frenkel pairs in the LaPO4 monazite is significantly lower than in the YbPO4 compound. The tendency of these minerals toward amorphization under radiation damage has been described numerically. The obtained results have demonstrated that one of the main factors determining the radiation resistance of orthophosphates LnPO4 is the type of crystal structure, and the compounds with the monazite structure are more radiation resistant than the compounds with the zircon structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nuclear Power Reactors in the World (International Atomic Energy Agency, Vienna, 2010), p. 77.

  2. R. C. Ewing, W. Lutze, and W. J. Weber, J. Mater. Res. 10, 243 (1995).

    Article  ADS  Google Scholar 

  3. B. C. Chakoumakos, T. Murakami, G. R. Lumpkin, and R. C. Ewing, Science (Washington) 236, 1556 (1987).

    Article  ADS  Google Scholar 

  4. T. Murakami, B. C. Chakoumakos, R. C. Ewing, G. R. Lumpkin, and W. J. Weber, Am. Mineral. 76, 1510 (1991).

    Google Scholar 

  5. W. J. Weber, R. C. Ewing, and L.-M. Wang, J. Mater. Res. 9, 688 (1994).

    Article  ADS  Google Scholar 

  6. A. P. Shpak, A. E. Grechanovsky, A. S. Lytovchenko, G. V. Legkova, and S. Yu. Sayenko, J. Nucl. Mater. 347, 73 (2005).

    Article  ADS  Google Scholar 

  7. R. C. Ewing, W. J. Weber, and F. W. Clinard, Prog. Nucl. Energy 29, 63 (1995).

    Article  Google Scholar 

  8. A. E. Grechanovskii, Radiation Stability of Natural and Man-Made Mineral Matrices for Long-Term and Environmentally Safe Disposal of High Level Radioactive Waste (Logos, Kiev, 2012) [in Russian].

    Google Scholar 

  9. M. T. Robinson, J. Nucl. Mater. 216, 1 (1994).

    Article  ADS  Google Scholar 

  10. A. Meldrum, L. A. Boatner, and R. C. Ewing, Phys. Rev. B: Condens. Matter 56, 13805 (1997).

    Article  ADS  Google Scholar 

  11. Y. Ni, J. M. Hughes, and A. N. Mariano, Am. Mineral. 80, 21 (1995).

    Google Scholar 

  12. D. F. Mullica, E. L. Sappenfield, and L. A. Boatner, Inorg. Chim. Acta 174, 155 (1990).

    Article  Google Scholar 

  13. D. F. Mullica, D. A. Grossie, and L. A. Boatner, J. Solid State Chem. 58, 71 (1985).

    Article  ADS  Google Scholar 

  14. A. Meldrum, S. J. Zinkle, L. A. Boatner, and R. C. Ewing, Phys. Rev. B: Condens. Matter 59, 3981 (1999).

    Article  ADS  Google Scholar 

  15. V. S. Urusov and N. N. Eremin, Atomistic Computer Simulations of the Structure and Properties of Inorganic Crystals and Minerals, and Their Defects and Solid Solutions (GEOS, Moscow, 2012) [in Russian].

    Google Scholar 

  16. K. Trachenko, J. M. Pruneda, E. Artacho, and M. T. Dove, Phys. Rev. B: Condens. Matter 71, 184104 (2005).

    Article  ADS  Google Scholar 

  17. I. T. Todorov and W. Smith, Philos. Trans. R. Soc. London, Ser. A 362, 1835 (2004).

    Article  ADS  MATH  Google Scholar 

  18. J. A. L. Rabone and N. H. de Leeuw, J. Comput. Chem. 27, 253 (2006).

    Article  Google Scholar 

  19. J. Wang, Y. Zhou, and Z. Lin, Appl. Phys. Lett. 87, 051902 (2005).

    Article  ADS  Google Scholar 

  20. P. E. D. Morgan and D. B. Marshall, J. Am. Ceram. Soc. 78, 1553 (1995).

    Article  Google Scholar 

  21. K. S. Gavrichev, M. A. Ryumin, A. V. Tyurin, V. M. Gurevich, and L. N. Komissarova, Thermochim. Acta 474, 47 (2008).

    Article  Google Scholar 

  22. P. Mogilevsky, E. B. Zaretsky, T. A. Parthasarathy, and F. Meisenkothen, Phys. Chem. Miner. 33, 691 (2006).

    Article  ADS  Google Scholar 

  23. G. J. Kramer, N. P. Farragher, B. W. H. van Beest, and R. A. van Santen, Phys. Rev. B: Condens. Matter 43, 5068 (1991).

    Article  ADS  Google Scholar 

  24. Y. Hikichi and T. Nomura, J. Am. Ceram. Soc. 70, 252 (1987).

    Google Scholar 

  25. V. S. Urusov, A. E. Grechanovskii, and N. N. Eremin, Geol. Rudn. Mestorozhd. 54, 472 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Grechanovsky.

Additional information

Original Russian Text © A.E. Grechanovsky, N.N. Eremin, V.S. Urusov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 9, pp. 1813–1819.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grechanovsky, A.E., Eremin, N.N. & Urusov, V.S. Radiation resistance of LaPO4 (monazite structure) and YbPO4 (zircon structure) from data of computer simulation. Phys. Solid State 55, 1929–1935 (2013). https://doi.org/10.1134/S1063783413090138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413090138

Keywords

Navigation