Physics of the Solid State

, Volume 55, Issue 9, pp 1976–1983 | Cite as

Molecular dynamics simulation of compression of single-layer graphene

Graphenes

Abstract

The compression of a single-layer graphene sheet in the “zigzag” and “armchair” directions has been investigated using the molecular dynamics method. The distributions of the xy and yx stress components are calculated for atomic chains forming the graphene sheet. A graphene sheet stands significant compressive stresses in the “zigzag” direction and retains its integrity even at a strain of ∼0.35. At the same time, the stresses which accompany the compressive deformation of single-layer graphene in the “armchair” direction are more than an order in magnitude lower than corresponding characteristics for the “zigzag” direction. A compressive strain of ∼0.35 in the “armchair” direction fractures the graphene sheet into two parts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Frank, G. Tsoukleri, J. Parthenios, K. Papagelis, I. Riaz, R. Jalil, K. S. Novoselov, and C. Galiotis, ACS Nano 4, 3131 (2010).CrossRefGoogle Scholar
  2. 2.
    J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B: Condens. Matter 75, 153401 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1980).Google Scholar
  4. 4.
    J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature (London) 46, 7131 (2007).Google Scholar
  5. 5.
    M. Neek-Amal and F. M. Peeters, Appl. Phys. Lett. 97, 153118 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, and C. Ning Lau, Nat. Nanotechnol. 4, 562 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    J. Tersoff, Phys. Rev. B: Condens. Matter 37, 6991 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    D. B. Boercker, Phys. Rev. B: Condens. Matter 44, 11592 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    A. Y. Galashev, Mol. Phys. 107, 2555 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A.Y. Galashev, J. Nanopart. Res. 12, 3003 (2010).CrossRefGoogle Scholar
  12. 12.
    K. Nordlund and J. Keinonen, Phys Rev. Lett. 77, 699 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Di Nola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    S. Yu. Davydov, Phys. Solid State 54(4), 875 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    R. Ansari, S. Ajori, and B. Motevalli, Superlattices Microstruct. 51, 274 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    D. W. Brenner, Phys. Rev. B: Condens. Matter 42, 9458 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Industrial EcologyUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal University named after the First President of Russia B. N. Yeltsin (Ural State Technical University-UPI)YekaterinburgRussia

Personalised recommendations