Skip to main content
Log in

Negative stiffness of the FeAl intermetallic nanofilm

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Uniaxial tension of the nanofilm of the FeAl intermetallic alloy has been simulated by the molecular dynamics method. It has been found that the nanofilm is elastically deformed by 37%. There is a region in the stress-strain curve, where the strain increases with a decrease in the tensile stress, which indicates the negative stiffness of the nanofilm in this region. The uniform strain with a decrease in the tensile stress is unstable thermodynamically, which leads to the appearance domains with different elastic strains in the nanofilm. The deformation in the unstable region develops due to the domain-wall motion; as a result, the domains with a higher strain grow at the expense of the domains with a lower strain. A similar deformation mechanism was recently described by Savin with coworkers for the DNA molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Evans and A. Alderson, Adv. Mater. (Weinheim) 12, 617 (2000).

    Article  Google Scholar 

  2. A. Alderson and K. L. Alderson, Proc. Inst. Mech. Eng., Part G 221(4), 565 (2007).

    Article  Google Scholar 

  3. X. F. Wang, T. E. Jones, W. Li, and Y. C. Zhou, Phys. Rev. B: Condens. Matter 85, 134108 (2012).

    Article  ADS  Google Scholar 

  4. T. Tian, X. F. Wang, and W. Li, Solid State Commun. 156, 69 (2013).

    Article  ADS  Google Scholar 

  5. J. W. Narojczyk and K. W. Wojciechowski, J. Non-Cryst. Solids 356, 2026 (2010).

    Article  ADS  Google Scholar 

  6. A. A. Vasiliev, S. V. Dmitriev, Y. Ishibashi, and T. Shigenari, Phys. Rev. B: Condens. Matter 65, 094101 (2002).

    Article  ADS  Google Scholar 

  7. A. U. Ortiz, A. Boutin, A. H. Fuchs, and F.-X. Coudert, Phys. Rev. Lett. 109, 195502 (2012).

    Article  ADS  Google Scholar 

  8. A. D. Fortes, E. Suard, and K. S. Knight, Science (Washington) 331, 742 (2011).

    Article  ADS  Google Scholar 

  9. J. N. Grima, D. Attard, and R. Gatt, Science (Washington) 331, 687 (2011).

    Article  ADS  Google Scholar 

  10. J. N. Grima, D. Attard, R. Caruana-Gauci, and R. Gatt, Scr. Mater. 65, 565 (2011).

    Article  Google Scholar 

  11. D. L. Barnes, W. Miller, K. E. Evans, and A. Marmier, Mech. Mater. 46, 123 (2012).

    Article  Google Scholar 

  12. E. V. Vakarin and A. V. Talyzin, Chem. Phys. 369, 19 (2010).

    Article  ADS  Google Scholar 

  13. R. S. Lakes and K. W. Wojciechowski, Phys. Status Solidi B 245(3), 545 (2008).

    Article  ADS  Google Scholar 

  14. J. N. Grima, B. Ellul, D. Attard, R. Gatt, and M. Attard, Compos. Sci. Technol. 70, 2248 (2010).

    Article  Google Scholar 

  15. V. Gava, A. L. Martinotto, and C. A. Perottoni, Phys. Rev. Lett. 109, 195503 (2012).

    Article  ADS  Google Scholar 

  16. P. L. de Andres, F. Guinea, and M. I. Katsnelson, Phys. Rev. B: Condens. Matter 86, 144103 (2012).

    Article  ADS  Google Scholar 

  17. V. E. Fairbank, A. L. Thompson, R. I. Cooper, and A. L. Goodwin, Phys. Rev. B: Condens. Matter 86, 104113 (2012).

    Article  ADS  Google Scholar 

  18. A. Rebello, J. J. Neumeier, Z. Gao, Y. Qi, and Y. Ma, Phys. Rev. B: Condens. Matter 86, 104303 (2012).

    Article  ADS  Google Scholar 

  19. I. A. Stepanov, J. Non-Cryst. Solids 356, 1168 (2010).

    Article  ADS  Google Scholar 

  20. V. G. Veselago, Sov. Phys.-Usp. 10(4), 509 (1967).

    Article  ADS  Google Scholar 

  21. V. Veselago, L. Braginsky, V. Shklover, and C. Hafner, J. Comput, Theor. Nanosci. 3(2), 189 (2006).

    Google Scholar 

  22. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Sov. Phys.-Usp. 4, 153 (1961).

    Article  ADS  Google Scholar 

  23. R. S. Lakes and W. J. Drugan, J. Mech. Phys. Solids 50, 979 (2002).

    Article  ADS  MATH  Google Scholar 

  24. D. Shilkrut and E. Riks, Stability on Nonlinear Shells (Elsevier, Oxford, 2002).

    MATH  Google Scholar 

  25. X. Wang, H. Hamasaki, M. Yamamura, R. Yamauchi, T. Maeda, Y. Shirai, and F. Yoshida, Mater. Trans., JIM 50(6), 1576 (2009).

    Article  Google Scholar 

  26. A. V. Dyskin and E. Pasternak, Int. J. Eng. Sci. 58, 45 (2012).

    Article  Google Scholar 

  27. C.-M. Lee and V. N. Goverdovskiy, J. Sound Vib. 331, 914 (2012).

    Article  ADS  Google Scholar 

  28. A. Carrella, M. J. Brennan, T. P. Waters, and K. Shin, J. Sound Vib. 315, 712 (2008).

    Article  ADS  Google Scholar 

  29. T. Zhu and J. Li, Prog. Mater. Sci. 55(7), 710 (2010).

    Article  Google Scholar 

  30. J. R. Greer and J. T. M. De Hosson, Prog. Mater. Sci. 56(6), 654 (2011).

    Article  Google Scholar 

  31. S. Li, X. Ding, J. Deng, T. Lookman, J. Li, X. Ren, J. Sun, and A. Saxena, Phys. Rev. B: Condens. Matter 82, 205435 (2010).

    Article  ADS  Google Scholar 

  32. V. K. Sutrakar and D. R. Mahapatra, Mater. Lett. 64, 879 (2010).

    Article  Google Scholar 

  33. V. K. Sutrakar and D. R. Mahapatra, Intermetallics 18, 1565 (2010).

    Article  Google Scholar 

  34. V. K. Sutrakar and D. R. Mahapatra, Nanotechnology 20, 295705 (2009).

    Article  Google Scholar 

  35. V. K. Sutrakar and D. R. Mahapatra, Intermetallics 18, 679 (2010).

    Article  Google Scholar 

  36. V. K. Sutrakar and D. R. Mahapatra, Mater. Lett. 63, 1289 (2009).

    Article  Google Scholar 

  37. A. V. Savin, I. P. Kikot, M. A. Mazo, and A. V. Onufriev, Proc. Natl. Acad. Sci. USA 110(8), 2816 (2013).

    Article  ADS  Google Scholar 

  38. C. Miehe, M. Lambrecht, and E. Gurses, J. Mech. Phys. Solids 52, 2725 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. E. Gurses and C. Miehe, J. Mech. Phys. Solids 59, 1268 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  40. http://lammps.sandia.gov/

  41. M. I. Mendelev, D. J. Srolovitz, G. J. Ackland, and S. Han, J. Mater. Res. 20, 208 (2005).

    Article  ADS  Google Scholar 

  42. K. A. Bukreeva, A. M. Iskandarov, V. I. Levit, S. V. Dmitriev, and R. R. Mulyukov, Perspekt. Mater., No. 12, 66 (2011).

    Google Scholar 

  43. K. A. Bukreeva, A. M. Iskandarov, S. V. Dmitriev, and R. R. Mulyukov, Deform. Razrushenie Mater., No. 10, 17 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bukreeva.

Additional information

Original Russian Text © K.A. Bukreeva, R.I. Babicheva, S.V. Dmitriev, K. Zhou, R.R. Mulyukov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 9, pp. 1847–1851.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukreeva, K.A., Babicheva, R.I., Dmitriev, S.V. et al. Negative stiffness of the FeAl intermetallic nanofilm. Phys. Solid State 55, 1963–1967 (2013). https://doi.org/10.1134/S1063783413090072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413090072

Keywords

Navigation