Skip to main content
Log in

Specific features of the spectral properties of a cholesteric liquid crystal with a resonance defective nanocomposite layer

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on studying the spectral properties of a cholesteric liquid crystal with a defective layer of a nanocomposite consisting of metallic nanoballs dispersed in a transparent matrix and characterized by an effective resonance dielectric permittivity. The transmission, reflection, and absorption spectra of waves of both circular polarizations have been calculated, and the spectral splitting of the defective mode when its frequency coincides with the resonance frequency of the nanocomposite has been studied. An essential dependence of the splitting on the nanoball concentration in the defect has been established. It has been shown that, depending on the position of the resonance frequency with respect to the boundaries of the cholesteric band gap, an additional passband appears in the transmission spectrum, which corresponds to waves of the diffracting circular polarization, or an additional band gap for waves of both circular polarizations, which are substantially modified with variations of both the incidence angle of light and the cholesteric helix pitch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, New Jersey, 2008), p. 286.

    Google Scholar 

  2. K. Sakoda, Optical Properties of Photonic Cristals (Springer-Verlag, Berlin, 2004), p. 253.

    Google Scholar 

  3. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonics Cristals: Advances in Design, Fabrication and Characterization (Wiley, Weinheim, 2004), p. 354.

    Book  Google Scholar 

  4. V. F. Shabanov, S. Ya. Vetrov, and A. V. Shabanov, Optics of Real Photonic Crystals: Liquid Crystal Defects and Inhomogeneities (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  5. A. M. Zheltikov, Phys.—Usp. 43(11), 1125 (2000).

    Article  ADS  Google Scholar 

  6. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature (London) 425, 944 (2003).

    Article  ADS  Google Scholar 

  7. O. Painter, R. Lee, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science (Washington) 284, 1819 (1999).

    Article  Google Scholar 

  8. B. M. Shi, Z. Jiang, X. F. Zhou, and X. Wang, J. Appl. Phys. 91, 6769 (2002).

    Article  ADS  Google Scholar 

  9. M. G. Martemyanov, T. V. Dolgova, and A. A. Fedyanin, JETP 98(3), 463 (2004).

    Article  ADS  Google Scholar 

  10. V. A. Belyakov and A. S. Sonin, Optics of Cholesteric Liquid Crystals (Nauka, Moscow, 1982).

    Google Scholar 

  11. Y.-C. Yang, C.-S. Kee, J.-E. Kim, and H.-Y. Park, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 6852 (1999).

    Article  Google Scholar 

  12. V. I. Kopp and A. Z. Genack, Phys. Rev. Lett. 89, 033901 (2003).

    Article  ADS  Google Scholar 

  13. J. Schmidtke, W. Stille, H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003).

    Article  ADS  Google Scholar 

  14. A. V. Shabanov, S. Ya. Vetrov, and A. Yu. Karneev, JETP Lett. 80 (3), 181 (2004).

  15. A. H. Gevorgyan and M. Z. Haratyunyan, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 76, 031701 (2007).

    Article  ADS  Google Scholar 

  16. V. A. Belyakov and S. V. Semenov, JETP 112(4), 694 (2011).

    Article  ADS  Google Scholar 

  17. S. Ya. Vetrov, A. Yu. Avdeeva, and I. V. Timofeev, JETP 113(5), 755 (2011).

    Article  ADS  Google Scholar 

  18. S. G. Moiseev, V. A. Ostatochnikov, and D. I. Sementsov, Kvantovaya Elektron. (Moscow) 42, 557 (2012).

    Article  Google Scholar 

  19. J. C. Maxwell Garnett, Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904).

    Article  ADS  Google Scholar 

  20. A. N. Oraevskii and I. E. Protsenko, JETP Lett. 72(9), 445 (2000).

    Article  ADS  Google Scholar 

  21. L. A. Golovan, V. Yu. Timoshenko, and P. K. Kashkarov, Phys.—Usp. 50(6), 595 (2007).

    Article  ADS  Google Scholar 

  22. D. W. Berreman, J. Opt. Soc. Am. 62(4), 502 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Pyatnov.

Additional information

Original Russian Text © S.Ya. Vetrov, M.V. Pyatnov, I.V. Timofeev, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 8, pp. 1585–1589.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetrov, S.Y., Pyatnov, M.V. & Timofeev, I.V. Specific features of the spectral properties of a cholesteric liquid crystal with a resonance defective nanocomposite layer. Phys. Solid State 55, 1697–1702 (2013). https://doi.org/10.1134/S1063783413080258

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413080258

Keywords

Navigation