Physics of the Solid State

, Volume 55, Issue 8, pp 1733–1738 | Cite as

Computer study of the physical properties of a copper film on a heated graphene surface

Surface Physics and Thin Films


The structural, kinetic, and mechanical properties of a copper film deposited on single-layer and two-layer graphenes have been studied in a molecular-dynamics model in the temperature range 300 K ≤ T ≤ 3300 K. The film sizes are reduced in the “zigzag” direction more slowly than in the “armchair” direction. The differences have been found to appear in the behavior of copper atoms on single-layer and two-layer graphenes with increasing temperature. Copper atoms on the two-layer graphene have higher horizontal mobility over entire temperature range. However, Cu atoms on the single-layer graphene become more mobile in the vertical direction beginning from a temperature of ∼1500 K. The stress tensor components of the copper film characterizing the action of forces on the horizontal areas have a sharp extremum at T = 1800 K in the case of the single-layer graphene and are characterized by quite smooth behavior in the case of the two-layer graphene.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. G. Rybin, A. S. Pozharov, and E. D. Obraztsova, Phys. Status Solidi C 7, 2785 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    P. A. Obraztsov, M. G. Rybin, A. V. Tyurnina, S. V. Garnov, E. D. Obraztsova, A. N. Obraztsov, and Y. P. Svirko, Nano Lett. 11, 1540 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    K. Jagannadham, Metall. Mater. Trans. B 43, 316 (2011).CrossRefGoogle Scholar
  4. 4.
    A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykko, and R. M. Nieminen, Phys. Rev. Lett. 102, 126807 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    H. Rafii-Tabar, Phys. Rep. 325, 239 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    A. Oluwajobi and X. Chen, Int. J. Autom. Comput. 8, 326 (2011).CrossRefGoogle Scholar
  8. 8.
    Z. Xu and M. J. Buehler, J. Phys.: Condens. Matter 22, 485301 (2010).CrossRefGoogle Scholar
  9. 9.
    E. K. Yu, D. A. Stewart, and S. Tiwari, Phys. Rev. B: Condens. Matter 77, 195406 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    M. C. F. Wander and K. L. Shuford, J. Phys. Chem. 114, 20539 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Yu. Davydov, Phys. Solid State 54(4), 875 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    G. K. White and S. J. Collocott, J. Phys. Chem. Ref. Data. 13, 1251 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    J. Hu, X. Ruan, and Y. P. Chen, Nano Lett. 9, 2730 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    D. W. Brenner, Phys. Rev. B: Condens. Matter 42, 9458 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys.: Condens. Matter 23, 202202 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    J. H. Los, L. M. Ghiringhelli, E. J. Meijer, and A. Fasolino, Phys. Rev. B: Condens. Matter 72, 214102 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Industrial EcologyUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Material Studies and MetallurgyUral Federal University named after the First President of Russia B. N. Yeltsin (Ural State Technical University-UPI)YekaterinburgRussia

Personalised recommendations