Skip to main content
Log in

Classification of structural modifications of carbon

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

New schemes have been proposed for the structural classification of carbon phases and nanostructures. These schemes are based on the types of chemical bonds formed in materials and on the number of nearest neighbors with which each atom forms covalent bonds. The classification schemes allow one to describe the already known phases and form the methodological basis for the prediction of new phases and nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Application (Noyes, Park Ridge, New Jersey, 1993).

    Google Scholar 

  2. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer-Verlag, Berlin, 2001).

    Book  Google Scholar 

  3. A. O. Erkimbaev, V. Yu. Zitserman, and G. A. Kobzev, High Temp. 48(6), 830 (2010).

    Article  Google Scholar 

  4. R. B. Heimann, S. E. Evsyukov, and Y. Koga, Carbon 35, 1654 (1997).

    Article  Google Scholar 

  5. E. A. Belenkov, V. V. Ivanovskaya, and A. L. Ivanovskii, Nanodiamonds and Related Carbon Nanomaterials (Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2008) [in Russian].

    Google Scholar 

  6. E. A. Belenkov, A. L. Ivanovskii, S. N. Ul’yanov, and F. K. Shabiev, J. Struct. Chem. 46(6), 961 (2005).

    Article  Google Scholar 

  7. E. A. Belenkov, V. A. Greshnyakov, and V. V. Mavrin- skii, Vestn. Chelyab. Gos. Univ., Fiz., No. 6, 22 (2009).

    Google Scholar 

  8. E. A. Belenkov and I. V. Shakhova, Phys. Solid State 53(11), 2385 (2011).

    Article  ADS  Google Scholar 

  9. L. S. Palatnik, M. B. Guseva, and V. G. Babaev, Sov. Phys. JETP 60(3), 520 (1984).

    Google Scholar 

  10. I. Konyashin, V. Khvostov, and V. Babaev, Int. J. Refract. Met. Hard Mater. 24, 17 (2006).

    Article  Google Scholar 

  11. J. M. Cowley, R. C. Mani, M. K. Sunkara, M. O’Keeffe, and C. Bonneau, Chem. Mater. 16, 4905 (2004).

    Article  Google Scholar 

  12. J. Robertson, Prog. Solid State Chem. 21, 199 (1991).

    Article  Google Scholar 

  13. R. E. Franklin, Acta Crystallogr. 3, 107 (1950).

    Article  Google Scholar 

  14. R. E. Franklin, Acta Crystallogr. 4, 253 (1951).

    Article  Google Scholar 

  15. J. Maire and J. Mering, Chem. Phys. Carbon 6, 125 (1970).

    ADS  Google Scholar 

  16. J. Lachter and R. H. Bragg, Phys. Rev. B: Condens. Matter 33, 8903 (1986).

    Article  ADS  Google Scholar 

  17. F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Jr., Nature (London) 176, 51 (1955).

    Article  ADS  Google Scholar 

  18. R. B. Aust and H. G. Drickamer, Science (Washington) 140, 817 (1963).

    Article  ADS  Google Scholar 

  19. F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46, 3437 (1967).

    Article  ADS  Google Scholar 

  20. N. N. Matyushenko, V. E. Strel’nitskii, and V. A. Gusev, JETP Lett. 30(4), 199 (1979).

    ADS  Google Scholar 

  21. J. K. Burdett and S. Lee, J. Am. Chem. Soc. 107, 3063 (1985).

    Article  Google Scholar 

  22. R. H. Baughman and D. S. Galvao, Chem. Phys. Lett. 211, 110 (1993).

    Article  ADS  Google Scholar 

  23. Yu. P. Kudryavtsev, Phys. Chem. Mater. Low-Dimens. Struct. 21, 1 (1998).

    Google Scholar 

  24. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).

    Article  ADS  Google Scholar 

  25. S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).

    Article  ADS  Google Scholar 

  26. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vasquez, and R. Beyers, Nature (London) 363, 605 (1993).

    Article  ADS  Google Scholar 

  27. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    Article  ADS  Google Scholar 

  28. R. Hoffmann, T. Hughbanks, M. Kertesz, and P. H. Bird, J. Am. Chem. Soc. 105, 4831 (1983).

    Article  Google Scholar 

  29. A. Y. Liu, M. L. Cohen, K. C. Hass, and M. A. Tamor, Phys. Rev. B: Condens. Matter 43, 6742 (1991).

    Article  ADS  Google Scholar 

  30. D. Vanderbilt and J. Tersoff, Phys. Rev. Lett. 68, 511 (1992).

    Article  ADS  Google Scholar 

  31. M. O’Keeffe, G. B. Adams, and O. F. Sankey, Phys. Rev. Lett. 68, 2325 (1992).

    Article  ADS  Google Scholar 

  32. R. H. Baughman and D. S. Galvao, Chem. Phys. Lett. 240, 180 (1995).

    Article  ADS  Google Scholar 

  33. V. Rosato, M. Celino, G. Benedek, and S. Gaito, Phys. Rev. B: Condens. Matter 60, 16928 (1999).

    Article  ADS  Google Scholar 

  34. M. Itoh, M. Kotani, H. Naito, T. Sunada, Y. Kawazoe, and T. Adschiri, Phys. Rev. Lett. 102, 055703 (2009).

    Article  ADS  Google Scholar 

  35. E. A. Belenkov and V. A. Ali-Pasha, Crystallogr. Rep. 56(1), 101 (2011).

    Article  ADS  Google Scholar 

  36. E. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Chem. Phys. 81, 3322 (1984).

    Article  ADS  Google Scholar 

  37. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature (London) 347, 354 (1990).

    Article  ADS  Google Scholar 

  38. S. Iijima, Nature (London) 354, 56 (1991).

    Article  ADS  Google Scholar 

  39. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science (Washington) 273, 483 (1996).

    Article  ADS  Google Scholar 

  40. B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature (London) 396, 323 (1998).

    Article  ADS  Google Scholar 

  41. D. Ugarte, Nature (London) 359, 707 (1992).

    Article  ADS  Google Scholar 

  42. V. A. Greshnyakov and E. A. Belenkov, JETP 113(1), 86 (2011).

    Article  ADS  Google Scholar 

  43. V. A. Greshnyakov, E. A. Belenkov, and V. M. Berezin, Crystalline Structure and Properties of Carbon Diamond-Like Phases (South Ural State University, Chelyabinsk, 2012) [in Russian].

    Google Scholar 

  44. V. A. Blatov, L. Carlucci, G. Ciani, and D. M. Proserpio, CrystEngComm 6, 377 (2004).

    Article  Google Scholar 

  45. V. A. Blatov and D. M. Proserpio, in Modern Methods of Crystal Structure Prediction, Ed. by A. Oganov (Wiley, Weinheim, 2011), p. 1.

  46. I. V. Stankevich, M. V. Nikerov, and D. A. Bochvar, Usp. Khim. 53, 1101 (1984).

    Article  Google Scholar 

  47. O. Delgado-Friedrichs, M. D. Foster, M. O’Keeffe, D. M. Proserpio, M. M. J. Treacy, and O. M. Yaghi, J. Solid State Chem. 178, 2533 (2005).

    Article  ADS  Google Scholar 

  48. Y. Deng, H. Liu, Bo Yu, and M. Yao, Molecules 15, 3478 (2010).

    Article  Google Scholar 

  49. E. A. Belenkov and F. K. Shabiev, Crystallogr. Rep. 52(2), 343 (2007).

    Article  ADS  Google Scholar 

  50. A. F. Wells, Three-Dimensional Nets and Polyhedra (Wiley, New York, 1977).

    Google Scholar 

  51. A. F. Wells, Further Studies of Three-Dimensional Nets (American Crystallographic Association, Knoxville, 1979).

    Google Scholar 

  52. M. O’Keeffe, Acta Crystallogr., Sect. A: Found. Crystallogr. 51, 916 (1995).

    Article  Google Scholar 

  53. O. Delgado-Friedrichs, A. W. M. Dress, D. H. Huson, J. Klinowski, and A. L. Mackay, Nature (London) 400, 644 (1999).

    Article  ADS  Google Scholar 

  54. R. V. Galiulin, Phys.—Usp. 45(2), 221 (2002).

    Article  ADS  Google Scholar 

  55. S. Han and J. V. Smith, Acta Crystallogr., Sect. A: Found. Crystallogr. 55, 332 (1999).

    Article  Google Scholar 

  56. S. Han and J. V. Smith, Acta Crystallogr., Sect. A: Found. Crystallogr. 55, 342 (1999).

    Article  Google Scholar 

  57. S. Han and J. V. Smith, Acta Crystallogr., Sect. A: Found. Crystallogr. 55, 360 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Belenkov.

Additional information

Original Russian Text © E.A. Belenkov, V.A. Greshnyakov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 8, pp. 1640–1650.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belenkov, E.A., Greshnyakov, V.A. Classification of structural modifications of carbon. Phys. Solid State 55, 1754–1764 (2013). https://doi.org/10.1134/S1063783413080039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413080039

Keywords

Navigation