Specific features in the change of electrical resistivity of carbon nanocomposites based on nanodiamonds under neutron irradiation

Abstract

The physical properties of bulk composite materials consisting of nanodiamond, pyrolytic carbon, and nanopores were investigated. Samples were irradiated in a channel of the reactor by fast neutrons (E > 0.5MeV) in ampoules with helium and in an aqueous medium. The dependences of the electrical transport properties of materials with different compositions on the dose of irradiation with fast neutrons were studied. A nonmonotonic change in the electrical resistivity with an increase in the neutron fluence was revealed. Possible explanations were offered for the observed dependence of the electrical resistivity on the neutron fluence, in particular, those related to the physical processes occurring in surface states of the three-phase system of the nanocomposite.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. V. Danilenko, Diamond Synthesis and Sintering by Explosion (Energoatomizdat, Moscow, 2003) [in Russian].

    Google Scholar 

  2. 2.

    S. K. Gordeev, Sverkhtverd. Mater. 6, 60 (2002).

    Google Scholar 

  3. 3.

    S. K. Gordeev, P. I. Belobrov, N. I. Kiselev, E. A. Petrakovskaya, and T. C. Ekstrom, Mater. Res. Soc. Symp. Proc. 638, F14.16.1 (2001).

    Article  Google Scholar 

  4. 4.

    I. V. Golosovsky, I. Mirebeau, E. Elkaim, D. A. Kurdyukov, and Yu. A. Kumzerov, Eur. Phys. J. B 47, 55 (2005).

    ADS  Article  Google Scholar 

  5. 5.

    E. I. Grigor’ev, P. S. Vorontsov, S. A. Zav’yalov, and S. N. Chvalun, Tech. Phys. Lett. 28(10), 845 (2002).

    ADS  Article  Google Scholar 

  6. 6.

    A. S. Kotosonov, JETP Lett. 43(1), 37 (1986).

    ADS  Google Scholar 

  7. 7.

    A. S. Kotosonov, Sov. Phys. JETP 66(5), 1068 (1987).

    Google Scholar 

  8. 8.

    A. S. Kotosonov, Sov. Phys. Solid State 33(9), 1477 (1991).

    Google Scholar 

  9. 9.

    A. S. Kotosonov, Sov. Phys. Solid State 31(8), 1359 (1989).

    Google Scholar 

  10. 10.

    L. V. Lutsev, T. K. Zvonareva, and V. M. Lebedev, Tech. Phys. Lett. 27,(8), 659 (2001).

    ADS  Article  Google Scholar 

  11. 11.

    P. I. Belobrov, in Proceedings of the 9th International Conference “High Technology in Russian Industry,” Central Research Technological Institute “Tekhnomash,” Moscow, September 11–13, 2003, p. 235.

  12. 12.

    E. I. Zhmurikov, Preprint No. 18, IYaF SO RAN (Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2005).

  13. 13.

    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1984).

    Google Scholar 

  14. 14.

    A. I. Romanenko, O. B. Anikeeva, A. V. Okotrub, L. G. Bulusheva, V. L. Kuznetsov, Yu. V. Butenko, A. L. Chuvilin, S. Dong, and Y. Ni, Phys. Solid State 44(3), 487 (2002).

    ADS  Article  Google Scholar 

  15. 15.

    A. G. Zabrodskii, Sov. Phys. Semicond. 11(3), 345 (1977).

    Google Scholar 

  16. 16.

    V. L. Kuznetsov, A. L. Chuvilin, Y. V. Butenko, I. Yu. Mal’kov, and V. M. Titov, Chem. Phys. Lett. 222, 343 (1994).

    ADS  Article  Google Scholar 

  17. 17.

    F. Banhart, Phys. Solid State 44(3), 399 (2002).

    ADS  Article  Google Scholar 

  18. 18.

    G. J. Dienes and G. H. Vineyard, Radiation Effects in Solids (Interscience, New York, 1957; Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

  19. 19.

    M. W. Thompson, Defects and Radiation Damage in Metals (Cambridge University Press, Cambridge, 1969; Mir, Moscow, 1971).

    Google Scholar 

  20. 20.

    R. F. Konopleva, V. L. Litvinov, and N. A. Ukhin, The Features of Radiation Damage of Semiconductors by High-Energy Particles (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  21. 21.

    Ig. Tamm, Z. Phys. 76(11–12), 849 (1932).

    ADS  Google Scholar 

  22. 22.

    I. M. Lifshitz and S. M. Pekar, Usp. Fiz. Nauk 56(4), 531 (1955).

    Google Scholar 

  23. 23.

    A. S. Krylov, N. P. Shestakov, S. B. Korchagina, S. S. Tsegel’nik, D. A. Znak, A. A. Latynina, I. A. Denisov, N. V. Volkov, S. K. Gordeev, and P. I. Belobrov, in Proceedings of the 17th International Conference “High Technology in Russian Industry,” Bauman Moscow State Technical University, Moscow, September 8–9, 2011, p. 382.

  24. 24.

    N. I. Kiselev, D. A. Velikanov, S. B. Korchagina, E. A. Petrakovskaya, A. D. Vasil’ev, L. A. Solov’ev, D. A. Balaev, O. A. Bayukov, I. A. Denisov, S. S. Tsegel’nik, E. V. Eremin, D. A. Znak, K. A. Shaikhutdinov, A. A. Shubin, N. P. Shestakov, N. V. Volkov, S. K. Gordeev, and P. I. Belobrov, Ross. Khim. Zh. LVI(1–2), 50 (2012).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. F. Konopleva.

Additional information

Original Russian Text © S.K. Gordeev, R.F. Konopleva, V.A. Chekanov, S.B. Korchagina, S.P. Belyaev, I.V. Golosovskii, I.A. Denisov, P.I. Belobrov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 7, pp. 1380–1385.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gordeev, S.K., Konopleva, R.F., Chekanov, V.A. et al. Specific features in the change of electrical resistivity of carbon nanocomposites based on nanodiamonds under neutron irradiation. Phys. Solid State 55, 1480–1486 (2013). https://doi.org/10.1134/S1063783413070147

Download citation

Keywords

  • Electrical Resistivity
  • Fast Neutron
  • Electrophysical Property
  • Neutron Fluence
  • Pyrolytic Carbon