Physics of the Solid State

, Volume 55, Issue 7, pp 1480–1486 | Cite as

Specific features in the change of electrical resistivity of carbon nanocomposites based on nanodiamonds under neutron irradiation

  • S. K. Gordeev
  • R. F. Konopleva
  • V. A. Chekanov
  • S. B. Korchagina
  • S. P. Belyaev
  • I. V. Golosovskii
  • I. A. Denisov
  • P. I. Belobrov
Low-Dimensional Systems
  • 54 Downloads

Abstract

The physical properties of bulk composite materials consisting of nanodiamond, pyrolytic carbon, and nanopores were investigated. Samples were irradiated in a channel of the reactor by fast neutrons (E > 0.5MeV) in ampoules with helium and in an aqueous medium. The dependences of the electrical transport properties of materials with different compositions on the dose of irradiation with fast neutrons were studied. A nonmonotonic change in the electrical resistivity with an increase in the neutron fluence was revealed. Possible explanations were offered for the observed dependence of the electrical resistivity on the neutron fluence, in particular, those related to the physical processes occurring in surface states of the three-phase system of the nanocomposite.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Danilenko, Diamond Synthesis and Sintering by Explosion (Energoatomizdat, Moscow, 2003) [in Russian].Google Scholar
  2. 2.
    S. K. Gordeev, Sverkhtverd. Mater. 6, 60 (2002).Google Scholar
  3. 3.
    S. K. Gordeev, P. I. Belobrov, N. I. Kiselev, E. A. Petrakovskaya, and T. C. Ekstrom, Mater. Res. Soc. Symp. Proc. 638, F14.16.1 (2001).CrossRefGoogle Scholar
  4. 4.
    I. V. Golosovsky, I. Mirebeau, E. Elkaim, D. A. Kurdyukov, and Yu. A. Kumzerov, Eur. Phys. J. B 47, 55 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    E. I. Grigor’ev, P. S. Vorontsov, S. A. Zav’yalov, and S. N. Chvalun, Tech. Phys. Lett. 28(10), 845 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    A. S. Kotosonov, JETP Lett. 43(1), 37 (1986).ADSGoogle Scholar
  7. 7.
    A. S. Kotosonov, Sov. Phys. JETP 66(5), 1068 (1987).Google Scholar
  8. 8.
    A. S. Kotosonov, Sov. Phys. Solid State 33(9), 1477 (1991).Google Scholar
  9. 9.
    A. S. Kotosonov, Sov. Phys. Solid State 31(8), 1359 (1989).Google Scholar
  10. 10.
    L. V. Lutsev, T. K. Zvonareva, and V. M. Lebedev, Tech. Phys. Lett. 27,(8), 659 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    P. I. Belobrov, in Proceedings of the 9th International Conference “High Technology in Russian Industry,” Central Research Technological Institute “Tekhnomash,” Moscow, September 11–13, 2003, p. 235.Google Scholar
  12. 12.
    E. I. Zhmurikov, Preprint No. 18, IYaF SO RAN (Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2005).Google Scholar
  13. 13.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1984).Google Scholar
  14. 14.
    A. I. Romanenko, O. B. Anikeeva, A. V. Okotrub, L. G. Bulusheva, V. L. Kuznetsov, Yu. V. Butenko, A. L. Chuvilin, S. Dong, and Y. Ni, Phys. Solid State 44(3), 487 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    A. G. Zabrodskii, Sov. Phys. Semicond. 11(3), 345 (1977).Google Scholar
  16. 16.
    V. L. Kuznetsov, A. L. Chuvilin, Y. V. Butenko, I. Yu. Mal’kov, and V. M. Titov, Chem. Phys. Lett. 222, 343 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    F. Banhart, Phys. Solid State 44(3), 399 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    G. J. Dienes and G. H. Vineyard, Radiation Effects in Solids (Interscience, New York, 1957; Inostrannaya Literatura, Moscow, 1960).MATHGoogle Scholar
  19. 19.
    M. W. Thompson, Defects and Radiation Damage in Metals (Cambridge University Press, Cambridge, 1969; Mir, Moscow, 1971).Google Scholar
  20. 20.
    R. F. Konopleva, V. L. Litvinov, and N. A. Ukhin, The Features of Radiation Damage of Semiconductors by High-Energy Particles (Atomizdat, Moscow, 1971) [in Russian].Google Scholar
  21. 21.
    Ig. Tamm, Z. Phys. 76(11–12), 849 (1932).ADSGoogle Scholar
  22. 22.
    I. M. Lifshitz and S. M. Pekar, Usp. Fiz. Nauk 56(4), 531 (1955).Google Scholar
  23. 23.
    A. S. Krylov, N. P. Shestakov, S. B. Korchagina, S. S. Tsegel’nik, D. A. Znak, A. A. Latynina, I. A. Denisov, N. V. Volkov, S. K. Gordeev, and P. I. Belobrov, in Proceedings of the 17th International Conference “High Technology in Russian Industry,” Bauman Moscow State Technical University, Moscow, September 8–9, 2011, p. 382.Google Scholar
  24. 24.
    N. I. Kiselev, D. A. Velikanov, S. B. Korchagina, E. A. Petrakovskaya, A. D. Vasil’ev, L. A. Solov’ev, D. A. Balaev, O. A. Bayukov, I. A. Denisov, S. S. Tsegel’nik, E. V. Eremin, D. A. Znak, K. A. Shaikhutdinov, A. A. Shubin, N. P. Shestakov, N. V. Volkov, S. K. Gordeev, and P. I. Belobrov, Ross. Khim. Zh. LVI(1–2), 50 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. K. Gordeev
    • 1
  • R. F. Konopleva
    • 2
  • V. A. Chekanov
    • 2
  • S. B. Korchagina
    • 1
  • S. P. Belyaev
    • 2
    • 4
  • I. V. Golosovskii
    • 2
  • I. A. Denisov
    • 3
  • P. I. Belobrov
    • 3
  1. 1.Central Research Institute for MaterialsSt. PetersburgRussia
  2. 2.Konstantinov Petersburg Nuclear Physics InstituteNational Research Centre “Kurchatov Institute,”Orlova Roshcha, Gatchina, Leningrad oblastRussia
  3. 3.Institute of Biophysics, Siberian Branch of the Russian Academy of SciencesSiberian Federal UniversityKrasnoyarskRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations