Skip to main content
Log in

Synthesis and electronic structure of nitrogen-doped graphene

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The crystalline and electronic structure of nitrogen-doped graphene (N-graphene) has been studied by photoelectron spectroscopy and scanning tunneling microscopy. Synthesis of N-graphene from triazine molecules on Ni(111) surface results in incorporation into graphene of nitrogen atoms primarily in the pyridinic configuration. It has been found that inclusions of nitrogen enhance significantly thermal stability of graphene on nickel. An analysis of the electronic structure of N-graphene intercalated by gold atoms has revealed that the pyridinic nitrogen culminates in weak p-type doping, in full agreement with theoretical predictions. Subsequent thermal treatment makes possible conversion of the major part of nitrogen atoms into the substitutional configuration, which involves n-type doping. It has been shown that the crystalline structure of the N graphene thus obtained reveals local distortions presumably caused by inhomogeneous distribution of impurities in the layer. The results obtained have demonstrated a promising application potential of this approach for development of electronic devices based on graphene with controllable type of conduction and carrier concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science (Washington) 335, 947 (2012).

    Article  ADS  Google Scholar 

  2. V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talanana, A. A. Starikov, M. Zwierzycki, J. van den Brink, G. Brocks, and P. J. Kelly, Phys. Rev. Lett. 99, 176602 (2007).

    Article  ADS  Google Scholar 

  3. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).

    Article  ADS  Google Scholar 

  4. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung, and K. Kim, Science (Washington) 336, 1140 (2012).

    Article  ADS  Google Scholar 

  5. D. Haberer, D. V. Vyalikh, S. Taioli, B. Dora, M. Farjam, J. Fink, D. Marchenko, T. Pichler, K. Ziegler, S. Simonucci, M. S. Dresselhaus, M. Knupfer, B. Büchner, and A. Grüneis, Nano Lett. 10, 3360 (2010).

    Article  ADS  Google Scholar 

  6. D. Haberer, C. E. Giusca, Y. Wang, H. Sachdev, A. V. Fedorov, M. Farjam, S. A. Jafari, D. V. Vyalikh, D. Usachov, X. Liu, U. Treske, M. Grobosch, O. Vilkov, V. K. Adamchuk, S. Irle, S. R. P. Silva, M. Knupfer, B. Büchner, and A. Grüneis, Adv. Mater. (Weinheim) 23, 4497 (2011).

    Article  Google Scholar 

  7. L. Zhao, R. He, K. T. Rim, T. Schiros, K. S. Kim, H. Zhou, C. Gutiérrez, S. P. Chockalingam, C. J. Arguello, L. Pálová, D. Nordlund, M. S. Hybertsen, D. R. Reichman, T. F. Heinz, P. Kim, A. Pinczuk, G. W. Flynn, and A. N. Pasupathy, Science (Washington) 333, 99 (2011).

    Google Scholar 

  8. A. Lherbier, X. Blase, Y.-M. Niquet, F. Triozon, and S. Roche, Phys. Rev. Lett. 101, 036808 (2008).

    Article  ADS  Google Scholar 

  9. C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, and Z. Liu, Adv. Mater. (Weinheim) 23, 1020 (2011).

    Article  Google Scholar 

  10. D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, and D. V. Vyalikh, Nano Lett. 11, 5401 (2011).

    Article  ADS  Google Scholar 

  11. Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, ACS Nano 4, 1790 (2010).

    Article  Google Scholar 

  12. A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, ACS Nano 4, 6337 (2010).

    Article  Google Scholar 

  13. L. Qu, Y. Liu, J.-B. Baek, and L. Dai, ACS Nano 4, 1321 (2010).

    Article  Google Scholar 

  14. E. H. Åhlgren, J. Kotakoski, and A. V. Krasheninnikov, Phys. Rev. B: Condens. Matter 83, 115424 (2011).

    Article  ADS  Google Scholar 

  15. P. Ayala, F. L. Freire, Jr., M. H. Rümmeli, A. Grüneis, and T. Pichler, Phys. Status Solidi B 244, 4051 (2007).

    Article  ADS  Google Scholar 

  16. X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science (Washington) 324, 768 (2009).

    Article  ADS  Google Scholar 

  17. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett. 9, 1752 (2009).

    Article  ADS  Google Scholar 

  18. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, Nature (London) 468, 549 (2010).

    Article  ADS  Google Scholar 

  19. Z. Jin, J. Yao, C. Kittrell, and J. M. Tour, ACS Nano 5, 4112 (2011).

    Article  Google Scholar 

  20. Y.-C. Lin, C.-Y. Lin, and P.-W. Chiu, Appl. Phys. Lett. 96, 133110 (2010).

    Article  ADS  Google Scholar 

  21. R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Rühle, and D. L. Carroll, Nano Lett. 1, 457 (2001).

    Article  ADS  Google Scholar 

  22. M. Terrones, P. M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger, and H. Terrones, Appl. Phys. A: Mater. Sci. Process. 74, 355 (2002).

    Article  ADS  Google Scholar 

  23. P. Ayala, A. Grüneis, C. Kramberger, M. H. Rümmeli, I. G. Solórzano, F. L. Friere, Jr., and T. Pichler, J. Chem. Phys. 127, 184709 (2007).

    Article  ADS  Google Scholar 

  24. S. H. Yang, W. H. Shin, and J. K. Kang, Small 4, 437 (2008).

    Article  Google Scholar 

  25. Y. J. Cho, H. S. Kim, S. Y. Baik, Y. Myung, C. S. Jung, C. H. Kim, J. Park, and H. S. Kang, J. Phys. Chem. C 115, 3737 (2011).

    Article  Google Scholar 

  26. J. Robertson and C. A. Davis, Diamond Relat. Mater. 4, 441 (1995).

    Article  ADS  Google Scholar 

  27. S. Jalili and R. Vaziri, Mol. Phys. 109, 687 (2001).

    Article  ADS  Google Scholar 

  28. Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay, and Y. Lin, J. Mater. Chem. 20, 7491 (2010).

    Article  Google Scholar 

  29. G. Imamura and K. Saiki, J. Phys. Chem. C 115, 10000 (2011).

    Article  Google Scholar 

  30. B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, and J. R. Gong, Nano Lett. 10, 4975 (2010).

    Article  ADS  Google Scholar 

  31. D. Usachov, V. K. Adamchuk, D. Haberer, A. Grüneis, H. Sachdev, A. B. Preobrajenski, C. Laubschat, and D. V. Vyalikh, Phys. Rev. B: Condens. Matter 82, 075415 (2010).

    Article  ADS  Google Scholar 

  32. C. Oshima and A. Nagashima, J. Phys.: Condens. Matter 9, 1 (1997).

    Article  ADS  Google Scholar 

  33. A. M. Shikin, G. V. Prudnikova, V. K. Adamchuk, F. Moresco, and K.-H. Rieder, Phys. Rev. B: Condens. Matter 62, 13202 (2000).

    Article  ADS  Google Scholar 

  34. A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008).

    Article  ADS  Google Scholar 

  35. W. J. Gammon, O. Kraft, A. C. Reillya, and B. C. Holloway, Carbon 41, 1917 (2003).

    Article  Google Scholar 

  36. J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Carbon 33, 1641 (1995).

    Article  Google Scholar 

  37. A. Grüneis, K. Kummer, and D. V. Vyalikh, New J. Phys. 11, 073050 (2009).

    Article  ADS  Google Scholar 

  38. P. Jacobson, B. Stöger, A. Garhofer, G. S. Parkinson, M. Schmid, R. Caudillo, F. Mittendorfer, J. Redinger, and U. Diebold, J. Phys. Chem. Lett. 3, 136 (2012).

    Article  Google Scholar 

  39. A. Varykhalov, M. R. Scholz, T. K. Kim, and O. Rader, Phys. Rev. B: Condens. Matter 82, 121101 (2010).

    Article  ADS  Google Scholar 

  40. D. Marchenko, A. Varykhalov, M. R. Scholz, G. Bihlmayer, E. I. Rashba, A. Rybkin, A. M. Shikin, and O. Rader, arXiv:1208.4265v1 (2012).

  41. F. Joucken, Y. Tison, J. Lagoute, J. Dumont, D. Cabosart, B. Zheng, V. Repain, C. Chacon, Y. Girard, A. R. Botello-Méndez, S. Rousset, R. Sporken, J.-C. Charlier, and L. Henrard, Phys. Rev. B: Condens. Matter 85, 161408 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Usachov.

Additional information

Original Russian Text © D.Yu. Usachov, A.V. Fedorov, O.Yu. Vilkov, B.V. Senkovskiy, V.K. Adamchuk, B.V. Andryushechkin, D.V. Vyalikh, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 6, pp. 1231–1237.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usachov, D.Y., Fedorov, A.V., Vilkov, O.Y. et al. Synthesis and electronic structure of nitrogen-doped graphene. Phys. Solid State 55, 1325–1332 (2013). https://doi.org/10.1134/S1063783413060310

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413060310

Keywords

Navigation