Skip to main content
Log in

Mössbauer studies of PbFe2/3W1/3O3 multiferroics

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Mössbauer studies of ceramic samples of the antiferromagnetic perovskite PbFe2/3W1/3O3 have been carried out. It has been established that the temperature of transition to the magnetically ordered state is T N = 365 K. Iron ions in PbFe2/3W1/3O3 are found to reside in the high-spin Fe3+ state. The Fe3+ ions occupy inequivalent positions differing in the nearest cation environment, or more precisely, tungsten and iron ions are distributed in a random manner over the sites of the octahedral sublattice. The inequivalent positions arise as a result of the Fe and W ions being statistically distributed over the octahedral sublattice. For T > 0 K, magnetic fields at the nuclei and, hence, the average thermodynamic values of the magnetic moments of Fe3+ ions occupying inequivalent positions are different and, at a given temperature, are determined by the number of the nearest magnetic neighbors, with the effective magnetic fields (H eff) varying differently with temperature. As the temperature is lowered, the fields H eff level off gradually in response to the effective magnetic fields of iron ions having different numbers of exchange bonds leveling off with decreasing temperature which lowers thermal excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, A. I. Sokolov, and N. K. Yushin, in Ferroelectrics and Related Materials, Ed. by G. A. Smolenskii (Gordon and Breach, New York, 1984; Nauka, Leningrad, 1985).

  2. D. I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006).

    Article  ADS  Google Scholar 

  3. M. Fiebig, Th. Lottermoser, D. Frohlich, A. V. Goltsev, and R. V. Pisarev, Nature (London) 419, 818 (2002).

    Article  ADS  Google Scholar 

  4. A. Kargol, L. Malkinski, and G. Caruntu, in Advanced Magnetic Materials, Ed. by L. Malkinski (InTech, Rijeka, Croatia, 2012).

  5. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).

    Article  Google Scholar 

  6. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature (London) 429, 392 (2004).

    Article  ADS  Google Scholar 

  7. Guolong Tan and Xiuna Chen, J. Magn. Magn. Mater. 327, 87 (2013).

    Article  ADS  Google Scholar 

  8. V. A. Bokov, I. E. Myl’nikova, and G. A. Smolenskii, Sov. Phys. JETP 15, 447 (1962).

    Google Scholar 

  9. V. P. Plakhtii, E. I. Mamtsev, and D. M. Vaminger, Izv. Akad. Nauk SSSR, Ser. Fiz. 28, 436 (1964).

    Google Scholar 

  10. S. V. Kiselev, R. P. Ozerov, and G. S. Zhdanov, Sov. Phys. Solid State 5(11), 2425 (1963).

    Google Scholar 

  11. Z.-G. Ye, K. Toda, M. Sato, E. Kita, and H. Schmid, J. Korean Phys. Soc. 32, S1028 (1998).

    Google Scholar 

  12. I. P. Raevskii, D. A. Sarychev, S. A. Bryugeman, L. A. Reznichenko, O. N. Razumovskaya, V. S. Nikolaev, and N. P. Vysochatko, Crystallogr. Rep. 47(6), 1012 (2002).

    Article  ADS  Google Scholar 

  13. R. Blinc, V. V. Laguta, B. Zalar, and J. Banys, J. Mater. Sci. 41, 27 (2006).

    Article  ADS  Google Scholar 

  14. V. A. Vokov, S. I. Yushchuk, G. V. Popov, and N. N. Parfenova, in Proceedings of the Conference on the Applications of the Mössbauer Effect, Tihany, Hungary, June 17–21, 1969, p. 531.

  15. V. G. Semenov and V. V. Panchuk, private communication.

  16. H. A. Kramers, Physica (Amsterdam) 1, 182 (1934).

    Article  ADS  MATH  Google Scholar 

  17. J. B. Goodenough and D. Wickham, J. Phys. Chem. Solids. 5, 107 (1958).

    Article  ADS  Google Scholar 

  18. M. A. Gilleo, J. Phys. Chem. Solids 13, 33 (1960).

    Article  ADS  Google Scholar 

  19. M. Eibschutz and S. Strikman, Phys. Rev. 156, 562 (1967).

    Article  ADS  Google Scholar 

  20. F. van der Woude and A. J. Dekker, Phys. Status Solidi B 9, 775 (1965).

    Article  ADS  Google Scholar 

  21. W. C. Hamilton, Phys. Rev 110, 1050 (1958).

    Article  ADS  Google Scholar 

  22. V. V. Ivanova, A. G. Kanyshev, and Yu. N. Venevtsev, Izv. Akad. Nauk SSSR, Neorg. Mater. 6, 168 (1970).

    Google Scholar 

  23. O. Beckman and K. Knox, Phys. Rev. 121, 376 (1961).

    Article  ADS  Google Scholar 

  24. V. P. Plakhtii, Sov. Phys. Solid State 9(8), 1889 (1967).

    Google Scholar 

  25. V. P. Polyakov, Sov. Phys. Solid State 9(10), 2224 (1967).

    Google Scholar 

  26. L. Cser, J. Dezsi, J. Gladkih, L. Keszthelyi, D. Kulgawezik, N. Eissa, and E. Sterk, Phys. Status Solidi B 27, 131 (1968).

    Article  ADS  Google Scholar 

  27. J. Nowik, Phys. Rev. 171, 550 (1968).

    Article  ADS  Google Scholar 

  28. I. S. Lyubutin, E. F. Makarov, and V. A. Povitskii, Sov. Phys. JETP 26(1), 44 (1967).

    ADS  Google Scholar 

  29. Nai Li Nag, R. Orbach, and E. Simaneck, Phys. Rev. Lett. 17, 134 (1966).

    Article  ADS  Google Scholar 

  30. J. Owen and R. Taylor, Phys. Rev. Lett. 16, 1164 (1966).

    Article  ADS  Google Scholar 

  31. A. J. Freeman and R. E. Watson, Phys. Rev. 123, 2027 (1961).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamzin.

Additional information

Original Russian Text © A.S. Kamzin, V.A. Bokov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 6, pp. 1103–1109.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamzin, A.S., Bokov, V.A. Mössbauer studies of PbFe2/3W1/3O3 multiferroics. Phys. Solid State 55, 1191–1197 (2013). https://doi.org/10.1134/S1063783413060140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413060140

Keywords

Navigation