Physics of the Solid State

, Volume 55, Issue 6, pp 1148–1155 | Cite as

Magnetic properties and surface morphology of layered In2Se3 crystals intercalated with cobalt

  • A. P. Bakhtinov
  • V. B. Boledzyuk
  • Z. D. Kovalyuk
  • Z. R. KudrynskyiEmail author
  • O. S. Lytvyn
  • A. D. Shevchenko


The magnetic properties of layered Co x In2Se3 crystals electrochemically intercalated with cobalt in an external magnetic field and without a magnetic field and the morphology of the van der Waals surfaces of layers of these crystals have been investigated. It has been found that the ferromagnetic ordering at room temperature is observed only for Co x In2Se3 crystals intercalated in an external magnetic field. These crystals are nanocomposite materials that consist of a layered matrix and arrays of nanorings and nanowires formed from Co nanocrystals on the van der Waals surfaces of the In2Se3 layers. Cobalt nanocrystals in Co x In2Se3 crystals have a pyramidal equilibrium shape, which is characteristic of the face-centered cubic crystal structure, and their geometrical sizes are of the order of a few nanometers. The specific features of self-organization of cobalt magnetic nanostructures on the van der Waals surfaces of layered semiconductor crystals during their electrolytic intercalation in a magnetic field and the magnetic properties of these structures have been considered.


External Magnetic Field Layered Crystal SnSe Nanopar Ticles Indium Selenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Dietl, J. Appl. Phys. 103, 07D111 (2008).CrossRefGoogle Scholar
  2. 2.
    V. V. Slynko, A. G. Khandozhko, Z. D. Kovalyuk, V. E. Slynko, A. V. Zaslonkin, M. Arciszewska, and W. Dobrowolski, Phys. Rev. B: Condens. Matter 71, 245301 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    I. M. Stakhira, N. K. Tovstyuk, V. L. Fomenko, V. M. Tsmots, and A. N. Shchuplyak, Semiconductors 45(10), 1258 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    A. R. de Moraes, D. H. Mosca, N. Mattoso, J. L. Guimaraes, J. J. Klein, W. H. Schreiner, P. E. N. de Sousa, A. J. A. de Oliveira, M. A. Z. de Vasconcellos, D. Demaille, M. Eddrief, and V. H. Etgens, J. Phys.: Condens. Matter 18, 1165 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    I. I. Grigorchak, Z. D. Kovalyuk, and S. P. Yurtsenyuk, Izv. Akad. Nauk SSSR, Neorg. Mater. 17, 412 (1981).Google Scholar
  6. 6.
    A. Ya. Tontegode and E. V. Rut’kov, Phys.—Usp. 36(11), 1053 (1993).CrossRefGoogle Scholar
  7. 7.
    N. T. Pokladok, I. I. Grigorchak, and Ya. M. Buzhuk, Tech. Phys. 55(2), 236 (2010).CrossRefGoogle Scholar
  8. 8.
    Z. D. Kovalyuk, V. B. Boledzyuk, V. V. Shevchik, V. M. Kaminskii, and A. D. Shevchenko, Semiconductors 46(8), 971 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    S. Bedanta and W. Kleemann, J. Phys.: Condens. Matter 42, 013001 (2009).Google Scholar
  10. 10.
    W. Jaegermann, A. Klein, and C. Pettenkofer, in Electron Spectroscopies Applied to Low-Dimensional Materials, Ed. by H. P. Hughes and H. I. Starnberg (Kluwer, Dordrecht, The Netherlands, 2002), p. 317.Google Scholar
  11. 11.
    L. Chitu, Y. Chushkin, S. Luby, E. Majkova, G. Leo, A. Sayka, M. Giersig, and M. Hilgendorff, Appl. Surf. Sci. 252, 5559 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    J. Legrand, A.-T. Ngo, C. Petit, and M. P. Pileni, Adv. Mater. (Weinheim) 13, 58 (2001).CrossRefGoogle Scholar
  13. 13.
    V. Germain, J. Richardi, D. Ingert, and M. P. Pileni, J. Phys. Chem. B 109, 5541 (2005).CrossRefGoogle Scholar
  14. 14.
    H. Niu, Q. Chen, H. Zhu, Y. Liu, and X. Zhang, J. Mater. Chem. 13, 1803 (2003).CrossRefGoogle Scholar
  15. 15.
    S. L. Tripp, S. V. Pusztay, A. E. Ribbe, and A. Wei, J. Am. Chem. Soc. 124, 7914 (2002).CrossRefGoogle Scholar
  16. 16.
    E. K. Athanassiou, P. Grossmann, R. N. Grass, and W. J. Stark, Nanotechnology 18, 165606 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    H. Kura, T. Sato, M. Takahashi, and T. Ogawa, Jpn. J. Appl. Phys. 47, 3466 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    J. Sanchez-Barriga, M. Lucas, F. Radu, E. Martin, M. Mutigner, P. Marin, A. Hernando, and G. Rivero, Phys. Rev. B: Condens. Matter 80, 184424 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    T. V. Antropova, I. N. Anfimova, I. V. Golosovskii, Yu. A. Kibalin, A. A. Naberezhnov, N. I. Porechnaya, O. A. Pshenko, and A. V. Filimonov, Phys. Solid State 54(10), 2106 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    Yu. V. Kasyuk, Yu. A. Fedotova, I. A. Svito, Yu. E. Kalinin, and A. V. Sitnikov, Phys. Solid State 54(10), 2091 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    C. M. Julien and M. Balkanski, Mater. Sci. Eng., B 100, 263 (2003).CrossRefGoogle Scholar
  22. 22.
    J. Cechal, O. Tomanec, D. Skoda, K. Konakova, T. Hrncir, J. Mach, M. Kolibal, and T. Sicola, J. Appl. Phys. 105, 084314 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    S. J. Steinmuller, C. A. F. Vaz, V. Strom, C. Moutafis, C. M. Gurtler, M. Klaui, J. A. C. Bland, and Z. Cui, J. Appl. Phys. 101, 09D113 (2007).CrossRefGoogle Scholar
  24. 24.
    A. P. Bakhtinov, V. N. Vodop’yanov, Z. D. Kovalyuk, V. V. Netyaga, and O. S. Lytvyn, Semiconductors 44(2), 171 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    M. Eddrief, Y. Wang, V. H. Etgens, D. H. Mosca, J.-L. Maurice, J. M. Jeorge, A. Fert, and S. Bourgognou, Phys. Rev. B: Condens. Matter 63, 094428 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    A. V. Kuranov, V. G. Pleshchev, A. N. Titov, N. V. Baranov, and L. S. Krasavin, Phys. Solid State 42(11), 2089 (2000).ADSCrossRefGoogle Scholar
  27. 27.
    N. Kodama, T. Hasegawa, Y. Okawa, T. Tsuruoka, C. Joachim, and M. Aono, Jpn. J. Appl. Phys. 49, 08LB01 (2010).CrossRefGoogle Scholar
  28. 28.
    A. P. Bakhtinov, V. N. Vodop’yanov, E. I. Slyn’ko, Z. D. Kovalyuk, and O. S. Lytvyn, Tech. Phys. Lett. 33(1), 86 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    A. I. Dmitriev, V. V. Vishnyak, G. V. Lashkarev, V. L. Karbovskii, Z. D. Kovalyuk, and A. P. Bakhtinov, Phys. Solid State 53(3), 622 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    E. Delawski and B. A. Parkinson, J. Am. Chem. Soc. 114, 1661 (1992).CrossRefGoogle Scholar
  31. 31.
    A. P. Bakhtinov, Z. R. Kudrynskyi, and O. S. Litvin, Phys. Solid State 53(10), 2154 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    A. P. Bakhtinov, V. N. Vodop’yanov, V. I. Ivanov, Z. D. Kovalyuk, and O. S. Lytvyn, Phys. Solid State 55(1), 181 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    Q. Liao, H. J. Zhang, K. Wu, H. Y. Li, S. N. Bao, and P. He, Nanotechnology 22, 125303 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    J.-W. Cai, S. Ocamoto, O. Kitakami, and Y. Shimada, Phys. Rev. B: Condens. Matter 63, 104418 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    K. R. Pirota and M. Vazquez, Adv. Eng. Mater. 7, 1111 (2005).CrossRefGoogle Scholar
  36. 36.
    I. M. L. Billas, A. Chatelain, and W. A. de Heer, Science (Washington) 265, 1682 (1994).ADSCrossRefGoogle Scholar
  37. 37.
    T. N. Rostovshchikova, V. V. Smirnov, V. M. Kozhevin, D. A. Yavsin, and S. A. Gurevich, Ross. Nanotekhnol. 2(1–2), 47 (2007).Google Scholar
  38. 38.
    A. Stannard, J. Phys.: Condens. Matter 23, 083001 (2011).ADSCrossRefGoogle Scholar
  39. 39.
    T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, Science (Washington) 261, 1316 (1993).ADSCrossRefGoogle Scholar
  40. 40.
    D. Salac and W. Lu, Appl. Phys. Lett. 89, 073105 (2006).ADSCrossRefGoogle Scholar
  41. 41.
    S. N. Ahmad, S. A. Shaheen, S. G. Rao, D. Magana, and G. F. Strouse, J. Appl. Phys. 103, 07B507 (2008).CrossRefGoogle Scholar
  42. 42.
    F. Dumas-Bouchiat, H. S. Nagaraja, F. Rossignol, C. Champeaux, G. Trolliard, A. Catherinot, and D. Givord, J. Appl. Phys. 100, 064304 (2006).ADSCrossRefGoogle Scholar
  43. 43.
    P. A. Ignatiev, N. N. Negulyaev, A. S. Smirnov, L. Niebergall, A. M. Saletsky, and V. S. Stepanyuk, Phys. Rev. B: Condens. Matter 80, 165408 (2009).ADSCrossRefGoogle Scholar
  44. 44.
    F. J. Castano, D. Morecroft, and C. A. Ross, Phys. Rev. B: Condens. Matter 74, 224401 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. P. Bakhtinov
    • 1
  • V. B. Boledzyuk
    • 1
  • Z. D. Kovalyuk
    • 1
  • Z. R. Kudrynskyi
    • 1
    Email author
  • O. S. Lytvyn
    • 2
  • A. D. Shevchenko
    • 3
  1. 1.Chernivtsi DepartmentFrantsevich Institute for Problems of Materials ScienceChernivtsiUkraine
  2. 2.Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine
  3. 3.Kurdyumov Institute for Metal PhysicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations