Advertisement

Physics of the Solid State

, Volume 55, Issue 5, pp 1078–1086 | Cite as

Electrophysical properties and structural features of shungite (natural nanostructured carbon)

  • E. A. Golubev
Atomic Clusters

Abstract

This paper presents the results of investigations of the electrical conductive properties with a nanoscale locality at nanoampere currents and the results of an analysis of the correlation between the electrical conductivity and structural features of natural glassy carbon, i.e., shungite. The investigations have been performed using atomic force microscopy, electric force spectroscopy, scanning spreading resistance microscopy, X-ray spectroscopic analysis, and Raman spectroscopy. It has been found that there are differences in electrical conductive properties of the structurally similar shungite samples formed under different PT conditions. Based on the analysis of the structural parameters and specific features of the shungite compositions, it has been shown that the effect of intercalation of impurities into boundary layers of graphene sheets has the most significant influence on the electrical and physical properties of the shungites. The differences in types and values of conductivity of the shungite samples are determined by the different degrees of intercalation.

Keywords

Fullerene Glassy Carbon Graphene Sheet Graphene Layer Carbon Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Parfen’eva, I. A. Smirnova, A. Z. Zaidenberg, N. N. Rozhkova, and G. B. Stefanovich, Phys. Solid State 36(1), 129 (1994).ADSGoogle Scholar
  2. 2.
    L. S. Parfen’eva, T. I. Volkonskaya, V. V. Tikhonov, I. N. Kulikova, I. A. Smirnov, N. N. Rozhkova, and A. Z. Zaidenberg, Phys. Solid State 36(4), 625 (1994).ADSGoogle Scholar
  3. 3.
    V. I. Berezkin, P. P. Konstantinov, and S. V. Kholodkevich, Phys. Solid State 39(10), 1590 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    P. R. Buseck, S. J. Tsipursky, and R. Hettich, Science (Washington) 257, 215 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    S. V. Kholodkevich, Khim. Tekhnol. 330, 340 (1993).Google Scholar
  6. 6.
    A. Z. Zaidenberg, V. V. Kovalevskii, N. N. Rozhkova, and A. G. Tupolev, Russ. J. Phys. Chem. A 70(1), 99 (1996).Google Scholar
  7. 7.
    V. V. Kovalevskii, Russ. J. Inorg. Chem. 39(1), 31 (1994).Google Scholar
  8. 8.
    V. V. Kovalevskii, Doctoral Dissertation (Petrozavodsk, 2007).Google Scholar
  9. 9.
    G. N. Zaitsev and V. V. Kovalevskii, in Geology and Mineral Resources of Karelia, Ed. by A. I. Golubev (Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, 2006), Vol. 9, p. 135 [in Russian].Google Scholar
  10. 10.
    V. I. Berezkin, Doctoral Dissertation (Novgorod, 2009).Google Scholar
  11. 11.
    A. G. Tupolev and N. N. Rozhkova, in Geology and Mineral Resources of Karelia, Ed. by A. I. Golubev (Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, 2006), Vol. 11, p. 249 [in Russian].Google Scholar
  12. 12.
    M. M. Filippov, Shungite-Bearing Rock Onega Structures (Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, 2002) [in Russian].Google Scholar
  13. 13.
    E. A. Golubev and V. N. Filippov, in Nanomineralogy: Ultradispersed and Microdispersed States of Mineral Matter, Ed. by N. P. Yushkin (Nauka, St. Petersburg, 2005), p. 337 [in Russian].Google Scholar
  14. 14.
    S. Banerjee, M. Sardar, N. Gayathri, A. K. Tyagi, and Baldev Raj, Appl. Phys. Lett. 88, 062111 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    M. Ahmad, S. A. Han, D. H. Tien, J. Jung, and Y. Seo, J. Appl. Phys. 110, 054307 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    V. V. Shvets, O. V. Sinitsyna, G. B. Meshkov, and I. V. Yaminskii, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., No. 6, 70 (2010).Google Scholar
  17. 17.
    Shungite: New Carbon Raw Material, Ed. by Yu. A. Sokolov (Kareliya, Petrozavodsk, 1984) [in Russian].Google Scholar
  18. 18.
    S. A. Gridnev, A. G. Gorshkov, M. N. Kopytin, A. V. Sitnikov, and O. V. Stognei, Izv. Akad. Nauk, Ser. Fiz. 70, 1130 (2006).Google Scholar
  19. 19.
    V. V. Kovalevski, P. R. Buseck, and J. M. Cowley, Carbon 39, 243 (2001).CrossRefGoogle Scholar
  20. 20.
    A. C. Ferrari and J. Robertson, Philos. Trans. R. Soc. London, Ser. A 362, 2477 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    S. V. Kholodkevich and V. V. Poborchii, Tech. Phys. Lett. 20(2), 99 (1994).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Geology of the Komi Scientific CentreUral Branch of the Russian Academy of SciencesSyktyvkarRepublic of Komi, Russia

Personalised recommendations