Skip to main content
Log in

Observation of structural relaxations in disordered solid media via spectral histories of single impurity molecules

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper presents the technique and results of the investigation of the structural relaxation in disordered solid media (polyisobutylene, toluene, ortho-dichlorobenzene) at temperatures below the glass transition point via the spectra and fluorescence images of single impurity fluorescent molecules (terrylene, tetra-tert-butylterrylene). Application of the thermal-cycling method has made it possible to significantly extend the temperature range of investigation (from 4.5 K to the glass transition temperature). The changes observed in individual parameters of low-energy elementary excitations of the tunneling and vibrational types due to structural relaxation processes have been studied. It has been found that there is a spatial inhomogeneity in the distribution of the activation temperatures of local relaxation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1991).

    Google Scholar 

  2. G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970).

    Article  ADS  Google Scholar 

  3. L. Wu, P. K. Dixon, S. R. Nagel, B. D. Williams, and J. P. Carini, J. Non-Cryst. Solids 131, 32 (1991).

    Article  ADS  Google Scholar 

  4. R. D. Deegan and S. R. Nagel, Phys. Rev. B: Condens. Matter 52, 5653 (1995).

    Article  ADS  Google Scholar 

  5. G. P. Johari, J. Non-Cryst. Solids 307, 317 (2002).

    Article  ADS  Google Scholar 

  6. V. A. Popova and N. V. Surovtsev, J. Chem. Phys. 135, 134510 (2011).

    Article  ADS  Google Scholar 

  7. P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).

    Article  ADS  MATH  Google Scholar 

  8. W. A. Phillips, J. Low. Temp. Phys. 7, 351 (1972).

    Article  ADS  Google Scholar 

  9. U. Buchenau, N. Nucker, and A. J. Dianoux, Phys. Rev. Lett. 53, 2316 (1984).

    Article  ADS  Google Scholar 

  10. Y. M. Galperin, V. G. Karpov, and V. I. Kozub, Adv. Phys. 38, 669 (1989).

    Article  ADS  Google Scholar 

  11. E. Duval, A. Boukenter, and T. Achibat, J. Phys.: Condens. Matter 2, 11227 (1990).

    Article  Google Scholar 

  12. B. B. Laird and H. R. Schober, Phys. Rev. Lett. 66, 636 (1991).

    Article  ADS  Google Scholar 

  13. Y. Inamura, M. Arai, M. Nakamura, T. Otomo, N. Kitamura, S. M. Bennington, A. C. Hannon, and U. Buchenau, J. Non-Cryst. Solids 293, 389 (2001).

    Article  ADS  Google Scholar 

  14. V. L. Gurevich, D. A. Parshin, and H. R. Schober, JETP Lett. 76(9), 553 (2002).

    Article  ADS  Google Scholar 

  15. D. Tielburger, R. Merz, R. Ehrenfels, and S. Hunklinger, Phys. Rev. B: Condens. Matter 45, 2750 (1992).

    Article  ADS  Google Scholar 

  16. V. G. Karpov, M. I. Klinger, and F. N. Ignat’ev, Sov. Phys. JETP 57(2), 439 (1983).

    Google Scholar 

  17. D. A. Parshin, Phys. Scr. 49a, 180 (1993).

    Article  ADS  Google Scholar 

  18. V. Lubchenko and P. G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007).

    Article  ADS  Google Scholar 

  19. S. Etienne, L. David, A. J. Dianoux, L. Saviot, and E. Duval, J. Non-Cryst. Solids 307, 109 (2002).

    Article  ADS  Google Scholar 

  20. A. V. Naumov and Yu. G. Vainer, Phys.—Usp. 52(3), 298 (2009).

    Article  ADS  Google Scholar 

  21. M. Orrit and W. E. Moerner, in Physics and Chemistry at Low Temperatures, Ed. by L. Khriachtchev (Pan Stanford, Singapore, 2011), p. 381.

  22. T. Basché, W. E. Moerner, M. Orrit, and U. P. Wild, Single-Molecule Optical Detection, Imaging, and Spectroscopy (Wiley, Weinheim, 1997).

    Google Scholar 

  23. A. M. Boiron, P. Tamarat, B. Lounis, R. Brown, and M. Orrit, Chem. Phys. 247, 119 (1999).

    Article  ADS  Google Scholar 

  24. Yu. G. Vainer, A. V. Naumov, M. Bauer, and L. Kador, Opt. Spectrosc. 94(6), 864 (2003).

    Article  ADS  Google Scholar 

  25. A. V. Naumov, Y. G. Vainer, and L. Kador, Phys. Rev. Lett. 98, 145501 (2007).

    Article  ADS  Google Scholar 

  26. Y. G. Vainer, A. V. Naumov, M. Bauer, and L. Kador, J. Lumin. 127, 213 (2007).

    Article  Google Scholar 

  27. I. Y. Eremchev, Y. G. Vainer, A. V. Naumov, and L. Kador, Phys. Chem. Chem. Phys. 13, 1843 (2011).

    Article  Google Scholar 

  28. A. V. Naumov, Y. G. Vainer, M. Bauer, and L. Kador, Phys. Status Solidi B 241, 3487 (2004).

    Article  ADS  Google Scholar 

  29. Y. G. Vainer, A. V. Naumov, M. Bauer, and L. Kador, J. Chem. Phys. 122, 244705 (2005).

    Article  ADS  Google Scholar 

  30. Yu. G. Vainer, M. A. Kol’chenko, A. V. Naumov, R. I. Personov, and S. J. Zilker, Phys. Solid State 45(2), 224 (2003).

    Article  ADS  Google Scholar 

  31. A. V. Naumov, Y. G. Vainer, M. Bauer, and L. Kador, J. Chem. Phys. 119, 6296 (2003).

    Article  ADS  Google Scholar 

  32. Y. G. Vainer, A. V. Naumov, M. Bauer, and L. Kador, J. Lumin. 107, 287 (2004).

    Article  Google Scholar 

  33. R. A. L. Vallee, N. Tomczak, G. J. Vancso, L. Kuipers, and N. F. van Hulst, J. Chem. Phys. 122, 114704 (2005).

    Article  ADS  Google Scholar 

  34. B. M. Kharlamov, J. Lumin. 86, 225 (2000).

    Article  Google Scholar 

  35. V. Palm, M. Pärs, J. Kikas, M. Nilsson, and S. Kroll, J. Lumin. 127, 218 (2007).

    Article  Google Scholar 

  36. Y. G. Vainer, I. Y. Eremchev, A. V. Naumov, and L. Kador, J. Non-Cryst. Solids 357, 466 (2011).

    Article  ADS  Google Scholar 

  37. W. P. Ambrose, T. Basché, and W. E. Moerner, J. Chem. Phys. 95, 7150 (1991).

    Article  ADS  Google Scholar 

  38. W. P. Ambrose and W. E. Moerner, Nature (London) 349, 225 (1991).

    Article  ADS  Google Scholar 

  39. A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, and G. J. Brakenhoff, Chem. Phys. Lett. 292, 183 (1998).

    Article  Google Scholar 

  40. A. V. Naumov, A. A. Gorshelev, Y. G. Vainer, L. Kador, and J. Köhler, Angew. Chem., Int. Ed. 48, 9747 (2009).

    Article  Google Scholar 

  41. T. L. Reinecke Solid State Commun. 32, 1103 (1979).

    Article  ADS  Google Scholar 

  42. E. Geva and J. L. Skinner, J. Phys. Chem. B 101, 8920 (1997).

    Article  Google Scholar 

  43. S. V. Orlov, A. V. Naumov, Yu. G. Vainer, and L. Kador, J. Chem. Phys. 137, 194903 (2012).

    Article  ADS  Google Scholar 

  44. D. E. McCumber and M. D. Sturge, J. Appl. Phys. 34, 1682 (1963).

    Article  ADS  Google Scholar 

  45. I. S. Osad’ko, Sov. Phys. Solid State 13(4), 974 (1971).

    Google Scholar 

  46. I. S. Osad’ko, Sov. Phys. Solid State 14(10), 2522 (1972).

    Google Scholar 

  47. I. S. Osad’ko, Sov. Phys. Solid State 17(11), 2098 (1975).

    Google Scholar 

  48. D. Hsu and J. L. Skinner, J. Chem. Phys. 83, 2097 (1985).

    Article  ADS  Google Scholar 

  49. I. S. Osad’ko, Selective Spectroscopy of Single Molecules (Springer, Berlin, 2003).

    Book  Google Scholar 

  50. V. Hizhnyakov, Chem. Phys. Lett. 493, 191 (2010).

    Article  ADS  Google Scholar 

  51. Y. G. Vainer, A. V. Naumov, M. A. Kol’chenko, and R. I. Personov, Phys. Status Solidi B 241, 3480 (2004).

    Article  ADS  Google Scholar 

  52. A. A. Gorshelev, A. V. Naumov, I. Y. Eremchev, Y. G. Vainer, L. Kador, and J. Köhler, ChemPhysChem 11, 182 (2010).

    Article  Google Scholar 

  53. A. Müller, W. Richter, and L. Kador, Chem. Phys. Lett. 241, 547 (1995).

    Article  ADS  Google Scholar 

  54. M. Orrit, J. Bernard, and R. I. Personov, J. Phys. Chem. 97, 10256 (1993).

    Article  Google Scholar 

  55. J. Colmenero and A. Arbe, Phys. Rev. B: Condens. Matter 57, 13 508 (1998).

    Article  Google Scholar 

  56. E. Rössler, J. Wiedersich, and N. V. Surovtsev, J. Chem. Phys. 113, 1143 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Naumov.

Additional information

Original Russian Text © I.Yu. Eremchev, Yu.G. Vainer, A.V. Naumov, L. Kador, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 4, pp. 652–660.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremchev, I.Y., Vainer, Y.G., Naumov, A.V. et al. Observation of structural relaxations in disordered solid media via spectral histories of single impurity molecules. Phys. Solid State 55, 710–719 (2013). https://doi.org/10.1134/S1063783413040100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413040100

Keywords

Navigation