Skip to main content
Log in

Thermal and physical properties of sodium niobate ceramics over a wide temperature range

  • Lattice Dynamics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependences of the heat capacity C p (T) and thermal expansion coefficient α(T) of NaNbO3 ceramic samples have been investigated in the temperature range from 2 to 800 K. In addition to the anomalies associated with the known phase transitions at temperatures T 6 ≈ 265 K, T 5 ≈ 638 K, T 4 ≈ 760 K, and T 3 ≈ 793 K, anomalies in the behavior of C p (T) and α(T) have been observed near T 5″ ≈ 500 K and T 5′ ≈ 600 K. It has been found that all the observed structural transformations, according to the values of the entropy change, are not related to the ordering of structural elements. It has been shown that, with an increase in the temperature, the unit cell volume during the phase transitions near 265, 515, 604, and 638 K decreases. The specific features of the transition to the phase R3c have been examined. Two possible scenarios of the sequence of phase transformations in the temperature range between T 5 and T 6 have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature (London) 432, 84 (2004).

    Article  ADS  Google Scholar 

  2. I. P. Raevski, L. A. Reznitchenko, M. A. Malitskaya, L. A. Shilkina, S. O. Lisitsina, S. I. Raevskaya, and E. M. Kuznetsova, Ferroelectrics 299(1–2), 95 (2004).

    Article  Google Scholar 

  3. S. I. Raevskaya, L. A. Reznichenko, I. P. Raevski, V. V. Titov, and S. V. Titov, Ferroelectrics 340, 107 (2006).

    Article  Google Scholar 

  4. T. R. Shrout and S. J. Zhang, J. Electroceram. 19, 111 (2007).

    Google Scholar 

  5. V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc. 95(1), 1 (2012).

    Article  Google Scholar 

  6. L. E. Cross and B. J. Nicholson, Philos. Mag. 46(376), 453 (1955).

    Google Scholar 

  7. R. Ishida and G. Honjo, J. Phys. Soc. Jpn. 34(11), 1279 (1973).

    Article  ADS  Google Scholar 

  8. K. S. Aleksandrov, A. T. Anistratov, B. V. Beznosikov, and N. V. Fedoseeva, Phase Transitions in Crystals of ABX3 Halide Compounds (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  9. H. D. Megaw, Ferroelectrics 7(1–4), 87 (1974).

    Article  Google Scholar 

  10. M. P. Ivliev, S. I. Raevskaya, I. P. Raevskii, V. A. Shuvaeva, and I. V. Pirog, Phys. Solid State 49(4), 769 (2007).

    Article  ADS  Google Scholar 

  11. I. Lefkowitz, K. Lukaszewicz, and H. D. Megaw, Acta Crystallogr. 20, 670 (1966).

    Article  Google Scholar 

  12. E. A. Wood, R. C. Miller, and J. P. Remeica, Acta Crystallogr. 15, 1273 (1962).

    Article  Google Scholar 

  13. J. Chen and D. Feng, Phys. Status Solidi A 109, 171 (1988).

    Article  ADS  Google Scholar 

  14. L. A. Reznichenko, L. A. Shilkina, E. S. Gagarina, I. P. Raevskii, E. A. Dul’kin, E. M. Kuznetsova, and V. V. Akhnazarova, Crystallogr. Rep. 48(3), 448 (2003).

    Article  ADS  Google Scholar 

  15. R. A. Shakhovoy, S. I. Raevskaya, L. A. Shakhovaya, D. V. Suzdalev, I. P. Raevski, Yu. I. Yuzyuk, A. F. Semenchev, and M. El Marssi, J. Raman Spectrosc. 43, 1141 (2012).

    Article  ADS  Google Scholar 

  16. A. Le Bail, Powder Diffr. 19, 249 (2004).

    Article  ADS  Google Scholar 

  17. L. A. Solovyov, J. Appl. Crystallogr. 37, 1 (2004).

    Article  MathSciNet  Google Scholar 

  18. A. C. Sakowski-Cowley, K. Lukaszewicz, and H. D. Megaw, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 851 (1969).

    Article  Google Scholar 

  19. A. V. Kartashev, I. N. Flerov, N. V. Volkov, and K. A. Sablina, Phys. Solid State 50(11), 2115 (2008).

    Article  ADS  Google Scholar 

  20. I. Pozdnyakova, A. Navrotsky, L. Shilkina, and L. Reznitchenko. J. Am. Ceram. Soc. 85(2), 379 (2002).

    Article  Google Scholar 

  21. Y. Shiratori, A. Magrez, W. Fischer, Ch. Pithan, and R. Waser, J. Phys. Chem. C 111, 18493 (2007).

    Article  Google Scholar 

  22. S. I. Raevskaya, I. P. Raevski, S. P. Kubrin, M. S. Panchelyuga, V. G. Smotrakov, V. V. Eremkin, and S. A. Prosandeev, J. Phys.: Condens. Matter 20, 232202 (2008).

    Article  ADS  Google Scholar 

  23. W. L. Zhong, P. L. Zhang, H. S. Zhao, Z. H. Yang, Y. Y. Song, and H. C. Chen, Phys. Rev. B: Condens. Matter 47, 10583 (1992).

    Article  ADS  Google Scholar 

  24. C. N. W. Darlington, Philos. Mag. 31, 1159 (1975).

    Article  ADS  Google Scholar 

  25. K. E. Johnston, C. C. Tang, J. E. Parker, K. S. Knight, P. Lightfoot, and S. E. Ashbrook, J. Am. Chem. Soc. 132, 8732 (2010).

    Article  Google Scholar 

  26. R. Jiménez, M. L. Sanjuán, and B. Jiménez, J. Phys.: Condens. Matter 16, 7493 (2004).

    Article  ADS  Google Scholar 

  27. K. Konieczny, Mater. Sci. Eng., B 60, 124 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Bondarev.

Additional information

Original Russian Text © V.S. Bondarev, A.V. Kartashev, M.V. Gorev, I.N. Flerov, E.I. Pogorel’tsev, M.S. Molokeev, S.I. Raevskaya, D.V. Suzdalev, I.P. Raevskii, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 4, pp. 752–758.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondarev, V.S., Kartashev, A.V., Gorev, M.V. et al. Thermal and physical properties of sodium niobate ceramics over a wide temperature range. Phys. Solid State 55, 821–828 (2013). https://doi.org/10.1134/S1063783413040045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413040045

Keywords

Navigation