Atomic positions and diffusion paths of h and he in the α-Ti lattice

Abstract

The solution energy of H and He in various interstitial and substitution positions in the hcp lattice of α-Ti has been calculated based on the method of electron density functional. The lowest solution energy of He corresponds to the basal octahedral position and that of H corresponds to the octahedral position (next in energy is the tetrahedral position). The calculated vibration frequencies of H in various positions are used for identification of lines in the vibration spectrum obtained by the method of neutron inelastic scattering. Taking into account these spectra, it can be concluded that hydrogen atoms occupy in the hcp lattice of Ti both the octahedral and tetrahedral positions even at 600 K. The available experimental data do not contradict the conclusion that the octahedral position is more preferable in α-Ti. The energy barriers are estimated for various diffusion paths of H and He.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W. M. Mueller, J. P. Blackledge, and G. G. Libowitz, Metal Hydrides (Academic, London, 1968; Atomizdat, Moscow, 1973).

    Google Scholar 

  2. 2.

    Y. Fukai, The Metal-Hydrogen System: Basic Bulk Properties (Springer, New York, 2009).

    Google Scholar 

  3. 3.

    V. M. Gul’ko, A. A. Klyuchnikov, N. F. Kolomiets, L. V. Mikhailov, and A. E. Shikanov, Ion-Vacuum Devices for Neutron Generation in Electronic Technology (Tekhnika, Kiev, 1988) [in Russian].

    Google Scholar 

  4. 4.

    A. A. Il’in, B. A. Kolachev, V. K. Nosov, and A. M. Mamonov, Hydrogen Technology of Titanium Alloys (Moscow Institute of Steel and Alloys, Moscow, 2002) [in Russian].

    Google Scholar 

  5. 5.

    M. A. Murzinova and G. A. Salishchev, Adv. Eng. Mater. 12, 765 (2010).

    Article  Google Scholar 

  6. 6.

    V. S. Kasperovich, B. B. Khar’kov, I. A. Rykov, S. A. Lavrov, Yu. S. Shelyapina, M. G. Chernyshev, V. I. Chizhik, N. E. Skryabina, D. Fruchart, and S. Miraglia, Phys. Solid State 53(2), 234 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    S. Ikeda, N. Watanabe, and K. Kai, Physica B (Amsterdam) 120, 131 (1983).

    ADS  Article  Google Scholar 

  8. 8.

    R. Hempelmann, D. Richter, and B. Stritzker, J. Phys. F: Met. Phys. 12, 79 (1982).

    ADS  Article  Google Scholar 

  9. 9.

    R. Khoda-Bakhsht and D. K. Ross, J. Phys. F: Met. Phys. 12, 12 (1982).

    ADS  Google Scholar 

  10. 10.

    Peter J. Branton, Gary Burnell, Peter G. Hall, and John Tomkinson, J. Mater. Chem. 4, 1309 (1994).

    Article  Google Scholar 

  11. 11.

    D. Connetable, J. Huez, E. Andrieu, and C. Mijoule, J. Phys.: Condens. Matter 23, 405401 (2011).

    Article  Google Scholar 

  12. 12.

    G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993).

    ADS  Article  Google Scholar 

  13. 13.

    G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    ADS  Article  Google Scholar 

  14. 14.

    Qingchuan Xu and Anton Van der Ven, Phys. Rev. B: Condens. Matter 82, 064207 (2007).

    ADS  Article  Google Scholar 

  15. 15.

    Yun-Ya Dai, Li Yang, Shu-Ming Peng, Xing-Gui Long, Fei Gao, and Xiao-Tao Zu, Chin. Phys. Lett. 27, 123102 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    A. V. Ruban, V. I. Baykov, B. Johansson, V. V. Dmitriev, and M. S. Blanter, Phys. Rev. B: Condens. Matter 82, 134110 (2010).

    ADS  Article  Google Scholar 

  17. 17.

    Per Vullum, Mark Pitt, John Walmsley, Bjorn Hauback, and Randi Holmestad, Appl. Phys. A: Mater. Sci. Process. 94, 787 (2009).

    ADS  Article  Google Scholar 

  18. 18.

    B. A. Kolachev, V. V. Sadkov, V. D. Talalaev, and A. V. Fishgoit, Vacuum Annealing of Titanium Constructions (Mashinostroenie, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kuksin.

Additional information

Original Russian Text © A.Yu. Kuksin, A.S. Rokhmanenkov, V.V. Stegailov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 2, pp. 326–331.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuksin, A.Y., Rokhmanenkov, A.S. & Stegailov, V.V. Atomic positions and diffusion paths of h and he in the α-Ti lattice. Phys. Solid State 55, 367–372 (2013). https://doi.org/10.1134/S1063783413020182

Download citation

Keywords

  • Density Functional Theory Calculation
  • Helium Atom
  • Hydrogen Isotope
  • Solution Energy
  • Titanium Hydride