Advertisement

Physics of the Solid State

, Volume 55, Issue 1, pp 181–195 | Cite as

Influence of external factors on the self-organization of lead and tin telluride nanostructures on the BaF2(111) surface under conditions close to the thermodynamic equilibrium

  • A. P. Bakhtinov
  • V. N. Vodop’yanovEmail author
  • V. I. Ivanov
  • Z. D. Kovalyuk
  • O. S. Lytvyn
Low-Dimensional Systems

Abstract

The morphology of PbTe and SnTe nanostructures grown on BaF2(111) substrates from the vapor phase in a vacuum under conditions close to the thermodynamic equilibrium has been investigated using atomic force microscopy. The equilibrium shape of PbTe and SnTe quantum dots and the statistical parameters of arrays of these quantum dots have been studied as a function of the thermodynamic conditions of growth, the crystal lattice mismatch between the materials of the quantum dots and substrate, and elastic properties of these materials. It has been established that, when the BaF2(111) substrate is deformed under external mechanical loading, the self-organization of dislocations on the BaF2(111) surface can result in the formation of a nanoscale ordered strain relief, which can be used for the fabrication of nanostructures. The morphology of this relief depends on the external load and on the temperature at which the substrate is deformed. It has been shown that the deformation effect on the surface of the substrate and light irradiation of the growth zone of nanostructures affect the nucleation of islands and kinetic processes occurring on the surface of the substrate during their growth. Using the influence of external factors on the BaF2(111) surface under certain thermodynamic conditions, it is possible to grow SnTe and PbTe nanostructures with different morphologies: continuous epitaxial layers with a thickness of less than 10 nm, homogeneous arrays of quantum dots with a high lateral density (more than 1011 cm2), quasi-periodic lateral nanostructures (nanowires), “single” and “coupled” quantum dots, and “molecules” of quantum dots.

Keywords

Atomic Force Microscopy Image PbTe Growth Zone Equilibrium Shape SnTe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. N. M. Dissanayake, R. A. Hatton, T. Lutz, C. E. Giusca, R. J. Curry, and S. R. P. Silva, Appl. Phys. Lett. 91, 133506 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, Appl. Phys. Lett. 97, 203501 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    X. H. Yang and X. Y. Qin, Appl. Phys. Lett. 97, 192101 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    K. Koike, T. Itakura, T. Hotei, and M. Yano, Appl. Phys. Lett. 91, 181911 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    A. Kigel, M. Brumer, G. I. Maikov, A. Sashchiuk, and E. Lifshitz, Small 5, 1675 (2009).CrossRefGoogle Scholar
  6. 6.
    G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, Appl. Phys. Lett. 79, 1225 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science (Washington) 270, 1335 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    G. Springholz, V. Holy, M. Pinczolits, and G. Bauer, Science (Washington) 282, 734 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Zh. I. Alferov, and D. Bimberg, Semiconductors 31(3), 343 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    J. G. Tischler, T. A. Kennedy, E. R. Glaser, Al. L. Efros, E. E. Foos, J. E. Boercker, T. J. Zega, R. M. Stroud, and S. C. Erwin, Phys. Rev. B: Condens. Matter 82, 245303 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    A. Y. Ueta, G. Springholz, and G. Bauer, J. Cryst. Growth 175/176, 1022 (1997).CrossRefGoogle Scholar
  12. 12.
    K. Alhalabi, D. Zimin, G. Kostorz, and H. Zogg, Phys. Rev. Lett. 90, 026104 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    S. O. Ferreira, B. R. A. Neves, R. Magalhaes-Paniago, A. Malachias, P. H. O. Rappl, A. Y. Ueta, E. Abramof, and M. S. Andrade, J. Crystal Growth. 231, 121 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    V. N. Vodop’yanov, A. P. Bakhtinov, E. I. Slyn’ko, G. V. Lashkarev, V. M. Radchenko, P. M. Lytvyn, and O. S. Lytvyn, Tech. Phys. Lett. 31(8), 716 (2005).CrossRefGoogle Scholar
  15. 15.
    V. N. Vodop’yanov, A. P. Bakhtinov, and E. I. Slyn’ko, Tech. Phys. Lett. 32(2), 167 (2006).CrossRefGoogle Scholar
  16. 16.
    T. I. Sheremeta, I. V. Prokopenko, P. M. Lytvyn, O. S. Lytvyn, V. N. Vodop’yanov, A. P. Bakhtinov, and E. I. Slyn’ko, Funct. Mater. 14, 86 (2007).Google Scholar
  17. 17.
    H. Clemens, E. J. Fantner, W. Ruhs, and G. Bauer, J. Cryst. Growth 66, 251 (1984).ADSCrossRefGoogle Scholar
  18. 18.
    P. Müller and R. Kern, J. Crystal Growth 193(1–2), 257 (1998).CrossRefGoogle Scholar
  19. 19.
    A. Rastelli, M. Stoffel, J. Tersoff, G. S. Kar, and O. G. Schmidt, Phys. Rev. Lett. 95, 026103 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    J. Y. Li, Q. G. Du, and S. Ducharme, J. Appl. Phys. 104, 094302 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    G. A. Kalyuzhnaya and K. V. Kiseleva, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 177, 5 (1987).Google Scholar
  22. 22.
    G. M. Guro, G. A. Kalyuzhnaya, T. S. Mamedov, and L. A. Shelepin, Sov. Phys. JETP 50(6), 1141 (1979).ADSGoogle Scholar
  23. 23.
    N. N. Ledentsov and D. Bimberg, J. Cryst. Growth 255(1–2), 68 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    N. P. Skvortsova, Phys. Solid State 48(1), 73 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    G. A. Malygin, Phys. Solid State 49(8), 1460 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    R. Kern and P. Müller, J. Cryst. Growth 146, 193 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    J. M. Mativetsky, S. Fostner, S. A. Burke, and P. Grutter, Phys. Rev. B: Condens. Matter 80, 045430 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    H. Holloway and I. N. Walpole, Prog. Cryst. Growth Charact. 2, 49 (1979).CrossRefGoogle Scholar
  29. 29.
    V. P. Zlomanov and A. V. Novoselova, P-T-x Phase Diagrams of the Metal-Chalcogen Systems (Nauka, Moscow, 1987) [in Russian].Google Scholar
  30. 30.
    M. Pinczolits, G. Springholz, and G. Bauer, J. Cryst. Growth 201/202, 1126 (1999).CrossRefGoogle Scholar
  31. 31.
    V. Holy, G. Springholz, M. Pinczolits, and G. Bauer, Phys. Rev. Lett. 83, 356 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    V. N. Vodop’yanov, A. P. Bakhtinov, E. I. Slyn’ko, M. V. Radchenko, V. I. Sichkovskyi, G. V. Lashkarev, W. Dobrowolski, and R. Yakiela, Phys. Solid State 48(7), 1342 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    K. Schmalzl, Phys. Rev. B: Condens. Matter 75, 014306 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    D. K. Hohnke, H. Holloway, and M. D. Hulley, Thin Solid Films 38, 49 (1976).ADSCrossRefGoogle Scholar
  35. 35.
    F. M. Ross, J. Tersoff, and R. M. Tromp, Phys. Rev. Lett. 80, 984 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    F. F. Vol’kenshtein, Electronic Processes on Semiconductor Surfaces during Chemisorption (Nauka, Moscow, 1987; Consultants Bureau, New York, 1991).Google Scholar
  37. 37.
    D. Salac and W. Lu, Appl. Phys. Lett. 89, 073105 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    F. Mugele and J.-C. Baret, J. Phys.: Condens. Matter 17, R705 (2005).ADSCrossRefGoogle Scholar
  39. 39.
    S. Mahapatra, K. Brunner, and C. Bougerol, Appl. Phys. Lett. 91, 153110 (2007).ADSCrossRefGoogle Scholar
  40. 40.
    S. Blunier, H. Zogg, C. Maissen, A. N. Tiwari, R. M. Overney, H. Haefke, P. A. Buffat, and G. Kostorz, Phys. Rev. Lett. 68, 3599 (1992).ADSCrossRefGoogle Scholar
  41. 41.
    H. Brune, K. Bromann, H. Roder, K. Kern, J. Jacobsen, P. Stoltse, K. Jacobsen, and J. Norskov, Phys. Rev. B: Condens. Matter 52, R14380 (1995).ADSCrossRefGoogle Scholar
  42. 42.
    M. I. Veksler, Yu. Yu. Illarionov, S. M. Suturin, V. V. Fedorov, and N. S. Sokolov, Phys. Solid State 52(11), 2357 (2010).ADSCrossRefGoogle Scholar
  43. 43.
    Y. Fukuma, M. Arifuku, H. Asada, and T. Koyanagi, J. Appl. Phys. 97, 073910 (2005).ADSCrossRefGoogle Scholar
  44. 44.
    Y. Fukuma, H. Asada, N. Moritake, T. Irisa, and T. Koyanagi, Appl. Phys. Lett. 91, 092501 (2007).ADSCrossRefGoogle Scholar
  45. 45.
    Y. Akiyama and H. Sakaki, Appl. Phys. Lett. 89(18), 183108 (2006).ADSCrossRefGoogle Scholar
  46. 46.
    G. A. Malygin, Phys. Solid State 37(1), 1 (1995).ADSGoogle Scholar
  47. 47.
    T. van Lippen, R. Notzel, G. J. Hamhuis, and J. H. Wolter, J. Appl. Phys. 97, 044301 (2005).ADSCrossRefGoogle Scholar
  48. 48.
    S.-S. Li and J.-B. Xia, Appl. Phys. Lett. 91, 092119 (2007).ADSCrossRefGoogle Scholar
  49. 49.
    M. Yamagiva, T. Mano, T. Kuroda, T. Tateno, K. Sakoda, G. Kido, N. Koguchi, and F. Minami, Appl. Phys. Lett. 88, 113115 (2006).ADSCrossRefGoogle Scholar
  50. 50.
    V. M. Fridkin, Ferroelectric Semiconductors (Nauka, Moscow, 1976; Consultants Bureau, New York, 1980).Google Scholar
  51. 51.
    K. H. Bennemann, J. Phys.: Condens. Matter 23, 073202 (2011).ADSCrossRefGoogle Scholar
  52. 52.
    A. Raab and G. Springholz, Appl. Phys. Lett. 77, 2991 (2000).ADSCrossRefGoogle Scholar
  53. 53.
    A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. P. Bakhtinov
    • 1
  • V. N. Vodop’yanov
    • 1
    Email author
  • V. I. Ivanov
    • 1
  • Z. D. Kovalyuk
    • 1
  • O. S. Lytvyn
    • 2
  1. 1.Chernivtsi DepartmentFrantsevich Institute for Problems of Materials ScienceChernivtsiUkraine
  2. 2.Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations