Skip to main content

Electrically conductive polyaniline—A molecular magnet with the possibility of chemically controlling the magnetic properties

Abstract

Different forms of an electrically conductive polymer, an organic semiconductor, namely, polyaniline, have been synthesized and characterized. The magnetization curves of the obtained forms have been analyzed. It has been found that, in the oxidized form, the material exhibits a magnetic hysteresis at room temperature. For polyaniline without a special doping with magnetic additives, this result has been obtained for the first time. The possibility of controlling the magnetic properties of the material by means of chemical treatment at the post-polymerization stage has been demonstrated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. M. Allemand, K. C. Khemani, A. Koch, F. Wudl, K. Holezer, S. Donovan, G. Gruner, and J. D. Thompson, Science (Washington) 253, 301 (1991).

    ADS  Article  Google Scholar 

  2. 2.

    R. Chialelli, M. A. Novak, A. Rassat, and J. L. Tholence, Nature (London) 363, 147 (1993).

    ADS  Article  Google Scholar 

  3. 3.

    M. M. Wienk and R. A. J. Janssen, J. Am. Chem. Soc. 119, 4492 (1997).

    Article  Google Scholar 

  4. 4.

    A. Ito, K. Ota, K. Tanaka, and T. Yamabe, Macromolecules 28, 5618 (1995).

    ADS  Article  Google Scholar 

  5. 5.

    Handbook of Conducting Polymers. Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, Ed. by T. A. Skotheim and J. R. Reynolds (CRC Press, Boca Raton, Florida, United States, 2007), p. 1238.

    Google Scholar 

  6. 6.

    J. Stejskal, I. Sapurina, J. Prokes, and J. Zemek, Synth. Met. 105, 195 (1999).

    Article  Google Scholar 

  7. 7.

    X.-L. Wei and A. J. Epstein, Synth. Met. 84 791 (1997).

    Article  Google Scholar 

  8. 8.

    A. A. Nekrasov, V. F. Ivanov, and A. V. Vannikov, J. Electroanal. Chem. 482(1), 11, (2000).

    Article  Google Scholar 

  9. 9.

    O. R. Nascimento, A. J. A. Oliveira Pereira, E. C. Cor- rea, and L. Walmsley, J. Phys.: Condens. Matter 20, 035215 (2008).

    ADS  Article  Google Scholar 

  10. 10.

    Y. Zhang, C. Zhu, and J. Kan, J. Appl. Polym. Sci. 109, 3024 (2008).

    Article  Google Scholar 

  11. 11.

    N. A. Zaidi, S. R. Giblin, I. Terry, and A. P. Monkman, Polymer 45, 5683 (2004).

    Article  Google Scholar 

  12. 12.

    G. I. Zvereva, B. Z. Lubentsov, A. P. Moravskii, O. A. Bochkova, V. N. Spektor, and A. A. Ovchinnikov, Dokl. Chem. 354(4-6), 140 (1997).

    Google Scholar 

  13. 13.

    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1, 2nd ed. (Nauka, Moscow, 1964; Butterworth-Heinemann, Oxford, 1968), p. 564.

    Google Scholar 

  14. 14.

    N. Spitseris, R. E. Ward, and T. Y. Mayer, Macromolecules 31, 3158 (1998).

    ADS  Article  Google Scholar 

  15. 15.

    L. Mezoralles, S. Folch, and P. Colomban, Macromolecules 32, 8504 (1999).

    ADS  Article  Google Scholar 

  16. 16.

    J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang, and A. G. MacDiarmid, Macromolecules 24, 779 (1991).

    ADS  Article  Google Scholar 

  17. 17.

    S. V. Vonsovskii, A. A. Samokhvalov, and A. A. Berdyshev, Helv. Phys. Acta 43, 9 (1970).

    Google Scholar 

  18. 18.

    E. L. Nagaev, Sov. Phys.—Usp. 18(11) 863 (1975).

    ADS  Article  Google Scholar 

  19. 19.

    M. M. Afanas’ev, M. E. Kompan, and I. A. Merkulov, Sov. Phys. JETP 71(6), 1086 (1976).

    ADS  Google Scholar 

  20. 20.

    A. V. Kulikov and M. N. Shishlov, Russ. Chem. Bull. 59(5), 912 (2010).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. E. Kompan.

Additional information

Original Russian Text © M.E. Kompan, I.Yu. Sapurina, V. Babayan, N.E. Kazantseva, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 12, pp. 2275–2281.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kompan, M.E., Sapurina, I.Y., Babayan, V. et al. Electrically conductive polyaniline—A molecular magnet with the possibility of chemically controlling the magnetic properties. Phys. Solid State 54, 2400–2406 (2012). https://doi.org/10.1134/S1063783412120190

Download citation

Keywords

  • PANI
  • Magnetization Curve
  • TCNQ
  • Weak Magnetic Field
  • Molecular Magnet