Skip to main content
Log in

Dynamics of domain walls in magnetically multiaxial films in the thickness range corresponding to the Bloch-Néel transformations of the structure

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The numerical minimization of the total energy functional and the solution of the nonlinear Landau-Lifshitz equation have been performed exactly taking into account the fundamental (including dipole-dipole) interactions in terms of the two-dimensional magnetization distribution. The equilibrium structure, energy, mobility, and scenario of the dynamic transformation of the domain walls (in their non- steady-state motion) have been determined as a function of the film thickness b and external magnetic field H for two different ((010) and (110)) orientations of the surfaces of magnetically triaxial films. The range of film thicknesses, including the thickness b = b N, for which the Néel domain walls can be transformed into the Bloch domain walls, has been investigated. The phenomena of anisotropy of the domain-wall energy, the domain-wall mobility, and the period of dynamic transformations of the domain walls have been analyzed as a function of the film thickness b and external magnetic field H. The range of film thicknesses has been determined, in which the non-steady-state motion of the Néel domain walls is accompanied by the creation and annihilation of vortex-like structures despite the one-dimensional character of the magnetization distribution in these walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. La Bonte, J. Appl. Phys. 40, 2450 (1969).

    Article  ADS  Google Scholar 

  2. A. Hubert and R. Schäfer, Magnetic Domains(Springer, Berlin, 1998).

    Google Scholar 

  3. B. N. Filippov and L. G. Korzunin, IEEE Trans. Magn. 29, 2563 (1993).

    Article  ADS  Google Scholar 

  4. V. V. Volkov and V. A. Bokov, Phys. Solid State 50(2), 199 (2008).

    Article  ADS  Google Scholar 

  5. S. Huo, J. E. L. Bishop, J. W. Tucker, W. M. Rainforth, and H. A. Dawies, J. Magn. Magn. Mater. 218, 103 (2000).

    Article  ADS  Google Scholar 

  6. J.-Y. Lee, K.-S. Lee, S. Choi, K. Y. Guslienko, and S.-K. Kim, Phys. Rev. B: Condens. Matter 76, 184408 (2007).

    Article  ADS  Google Scholar 

  7. B. G. Elmegreen, L. Krusin-Elbaum, T. Shibauchi, and B. Argyle, Phys. Rev. Lett. 93, 19721 (2004).

    Article  Google Scholar 

  8. J. Yang, C. Nistor, G. S. D. Beach, and J. L. Erskine, Phys. Rev. B: Condens. Matter 77, 014413 (2008).

    Article  ADS  Google Scholar 

  9. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science (Washington) 320, 190 (2008).

    Article  ADS  Google Scholar 

  10. S. D. Bader and S. S. P. Parkin, Annu. Rev. Condens. Matter Phys. 1, 71 (2010).

    Article  ADS  Google Scholar 

  11. L. M. Néel, C. R. Hebd. Seances Acad. Sci. 241, 533 (1955).

    Google Scholar 

  12. S. Tsukahara and H. Kavakatsu, J. Phys. Soc. Jpn. 32, 1493 (1972).

    Article  ADS  Google Scholar 

  13. B. N. Filippov, Phys. Solid State 50(4), 670 (2008).

    Article  ADS  Google Scholar 

  14. B. N. Filippov, L. G. Korzunin, and F. A. Kassan-Ogly, Solid State Commun. 129, 395 (2004).

    Article  ADS  Google Scholar 

  15. L. G. Korzunin, M. N. Dubovik, and B. N. Filippov, Phys. Solid State 52(10), 2099 (2010).

    Article  ADS  Google Scholar 

  16. S. Konishi, S. Yamada, and T. Kusuda, IEEE Trans. Magn. MAG-7, 722 (1971).

    Article  ADS  Google Scholar 

  17. B. N. Filippov, M. N. Dubovik, and L. G. Korzunin, Phys. Met. Metallogr. 112(4), 330 (2011).

    Article  ADS  Google Scholar 

  18. U. Gradman, M. Przybylski, H. J. Elmers, and G. Liu, Appl. Phys. A: Solids Surf. 49, 563 (1989).

    Article  ADS  Google Scholar 

  19. B. N. Filippov, L. G. Korzunin, and F. A. Kassan-Ogly, Phys. Rev. B: Condens. Matter 64, 104412 (2001).

    Article  ADS  Google Scholar 

  20. B. N. Filippov and L. G. Korzunin, JETP 94(2), 315 (2002).

    Article  ADS  Google Scholar 

  21. B. N. Filippov and L. G. Korzunin, Fiz. Met. Metalloved. 75, 49 (1993).

    Google Scholar 

  22. L. Néel, Cah. Phys. 25, 1 (1944).

    Google Scholar 

  23. T. Trunk, M. Redjdal, A. Kákay, M. F. Ruane, and F. B. Hamphray, J. Appl. Phys. 89, 7606 (2001).

    Article  ADS  Google Scholar 

  24. N. Schryer and L. Walker, J. Appl. Phys. 45, 5406 (1974).

    Article  ADS  Google Scholar 

  25. M. W. Muller and S. Dawson, J. Math. Phys. 3, 467 (1962).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Filippov.

Additional information

Original Russian Text © B.N. Filippov, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 12, pp. 2282–2288.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, B.N. Dynamics of domain walls in magnetically multiaxial films in the thickness range corresponding to the Bloch-Néel transformations of the structure. Phys. Solid State 54, 2407–2415 (2012). https://doi.org/10.1134/S106378341212013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341212013X

Keywords

Navigation