Advertisement

Physics of the Solid State

, Volume 54, Issue 8, pp 1732–1739 | Cite as

Thermal conductivity of high-porosity heavily doped biomorphic silicon carbide prepared from sapele wood biocarbon

  • L. S. Parfen’eva
  • T. S. Orlova
  • B. I. Smirnov
  • I. A. Smirnov
  • H. Misiorek
  • J. Mucha
  • A. Jezowski
  • R. Cabezas-Rodriguez
  • J. Ramirez-Rico
Thermal Properties

Abstract

The electrical resistivity and thermal conductivity of high-porosity (∼52 vol %, channel-type pores) bio-SiC samples prepared from sapele wood biocarbon templates have been measured in the temperature range 5–300 K. An analysis has been made of the obtained results in comparison with the data for bio-SiC samples based on beech and eucalyptus, as well as for polycrystalline β-SiC. The conclusion has been drawn that the electrical resistivity and thermal conductivity of bio-SiC samples based on natural wood are typical of heavily doped polycrystalline β-SiC.

Keywords

Thermal Conductivity Electrical Resistivity Silicon Carbide Tree Wood Channel Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Sieber, C. Hoffman, A. Kaindl, and P. Greil, Adv. Eng. Mater. 2, 105 (2000).CrossRefGoogle Scholar
  2. 2.
    H. Sieber, Mater. Sci. Eng., A 412, 43 (2005).CrossRefGoogle Scholar
  3. 3.
    A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1, 56 (2004).CrossRefGoogle Scholar
  4. 4.
    E. Vogli, H. Sieber, and P. Greil, J. Eur. Ceram. Soc. 22, 2663 (2002).CrossRefGoogle Scholar
  5. 5.
    V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).CrossRefGoogle Scholar
  6. 6.
    K. E. Pappacena, K. T. Faber, H. Wang, and W. D. Porter, J. Am. Ceram. Soc. 90, 2855 (2007).CrossRefGoogle Scholar
  7. 7.
    V. S. Kaul and K. T. Faber, Scr. Mater. 58, 886 (2008).CrossRefGoogle Scholar
  8. 8.
    T. E. Wilkes, J. Y. Pastor, J. Llorca, and K. T. Faber, J. Mater. Res. 23, 1732 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    T. E. Wilkes, S. R. Stock, F. De Carlo, X. Xiao, and K. T. Faber, Philos. Mag. 89, 1373 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    K. E. Pappacena, S. P. Gentry, T. E. Wilkes, M. T. Johnson, S. Xie, A. David, and K. T. Faber, J. Eur. Ceram. Soc. 29, 3069 (2009).CrossRefGoogle Scholar
  11. 11.
    H. Robbins and B. Schwartz, J. Electrochem. Soc. 106, 505 (1959).CrossRefGoogle Scholar
  12. 12.
    J. S. Shor, I. Grinberg, Ben-Zion Weiss, and A. D. Kurtz, Appl. Phys. Lett. 62(22), 2836 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    J. S. Shor, L. Bemis, A. D. Kurtz, I. Grinberg, B. Z. Weiss, M. F. MacMillian, and W. J. Choyke, J. Appl. Phys. 76(7), 4045 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Ke, F. Yan, R. P. Devaty, and W. J. Choyke, Mater. Sci. Forum, 527–529, 719 (2006).Google Scholar
  15. 15.
    L. S. Parfen’eva, B. I. Smirnov, I. A. Smirnov, H. Misiorek, J. Mucha, A. Jezowski, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and S. Sepulveda, Phys. Solid State 49(2), 211 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    T. S. Orlova, D. V. Il’in, B. I. Smirnov, I. A. Smirnov, R. Sepulveda, J. Martinez-Fernandez, and A. R. de Arellano-Lopez, Phys. Solid State 49(2), 205 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    I. A. Smirnov, B. I. Smirnov, A. I. Krivchikov, H. Misiorek, A. Jezowski, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and R. Sepulveda, Phys. Solid State 49(10), 1835 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    I. A. Smirnov, B. I. Smirnov, E. N. Mokhov, Cz. Sulkowski, H. Misiorek, A. Jezowski, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 50(8), 1407 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    V. V. Popov, T. S. Orlova, J. Ramirez-Rico, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 50(10), 1819 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    F. M. Varela-Feria, PhD Thesis (Universidad de Sevilla, Sevilla, Spain, 2004).Google Scholar
  21. 21.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, and I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 51(10), 2023 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    E. Ya. Litovskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 559 (1980).Google Scholar
  24. 24.
    A. Balandin, Nat. Mater. 10, 569 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. S. Meilikhov (Energoizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997), p. 197.Google Scholar
  26. 26.
    E. A. Bel’skaya and A. S. Tarabanov, in Thermophysical Properties of Solids (Naukova Dumka, Kiev, 1971), p. 111 [in Russian].Google Scholar
  27. 27.
    A. L. Love, J. Appl. Phys. 22, 252 (1951).ADSGoogle Scholar
  28. 28.
    Yu. A. Vodakov and A. G. Ostroumov, Izmer., Kontrol, Avtom. 2, 53 (1987).Google Scholar
  29. 29.
    D. Morell, J. Hermans, C. Beetz, W. S. Woo, G. L. Harris, and C. Taylor, Inst. Phys. Conf. Ser., No. 137, 313 (1993).Google Scholar
  30. 30.
    Thermal Conductivity of Solids Handbook, Ed. by A. S. Okhotin (Energoatomizdat, Moscow, 1984) [in Russian].Google Scholar
  31. 31.
    G. Bush, Philips Res. Rep. 16, 455 (1964).Google Scholar
  32. 32.
    L. I. Ivanova, R. A. Aleksandrov, and K. D. Demakov, Inorg. Mater. 42(11), 1205 (2006).CrossRefGoogle Scholar
  33. 33.
    A. Sparavigna, Phys. Rev. B: Condens. Matter 66, 174301 (2002).ADSCrossRefGoogle Scholar
  34. 34.
    Physico-Chemical Properties of Semiconductor Substances: A Handbook, Ed. by A. V. Novoselova and V. B. Lazarev (Nauka, Moscow, 1978) [in Russian].Google Scholar
  35. 35.
    Y. Katoh, A. Kohyama, W. Yang, T. Hinoki, R. Yamada, S. Suyama, M. Ito, N. Tachikawa, M. Sato, and T. Yamamura, in Proceedings of the International Town Meeting on SiC/SiC Design and Material Issues for Fusion Systems, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States, January 18–19, 2000 (Oak Ridge, 2000).Google Scholar
  36. 36.
    Properties of Silicon Carbide, Ed by G. L. Harris (Institution of Electrical Engineers, London, 1995).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • L. S. Parfen’eva
    • 1
  • T. S. Orlova
    • 1
  • B. I. Smirnov
    • 1
  • I. A. Smirnov
    • 1
  • H. Misiorek
    • 2
  • J. Mucha
    • 2
  • A. Jezowski
    • 2
  • R. Cabezas-Rodriguez
    • 3
  • J. Ramirez-Rico
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Trzebiatowski Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWroclawPoland
  3. 3.Departamento de Fisica de la Materia Condensada—Instituto de Ciencia de Materiales de Sevilla (ICMSE)Universidad de SevillaSevillaSpain

Personalised recommendations