Skip to main content
Log in

Surface electromagnetic waves in thin-layer biaxial structure in a magnetic field

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The conditions for the existence of surface electromagnetic waves at the planar interface between a homogeneous medium (vacuum) and a thin-layer periodic structure consisting of alternating semiconductor and dielectric layers in an external magnetic field have been investigated. This structure represents an optically biaxial crystal with the effective permittivity tensor components dependent both on the geometric parameters of the structure and on the physical characteristics (magnetic field strength, frequency, and thicknesses of the layers). It has been shown that the propagation of surface electromagnetic waves localized near the interface can occur in the thin-layer biaxial structure within specific ranges of frequencies and external magnetic field strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Agranovich and D. L. Mills, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland, Amsterdam, 1982; Nauka, Moscow, 1985).

    Google Scholar 

  2. M. N. Libenson, Soros. Obraz. Zh. 10, 92 (1996).

    Google Scholar 

  3. V. I. Alshits and V. N. Lyubimov, Phys. Solid State 44(10), 1988 (2002).

    Article  ADS  Google Scholar 

  4. M. I. D’yakonov, Sov. Phys. JETP 67(4), 714 (1988).

    MathSciNet  Google Scholar 

  5. H.-Y. D. Yang and J. Wang, IEEE Trans. Antennas Propag. 49, 444 (2001).

    Article  ADS  Google Scholar 

  6. S. V. Eliseeva, D. I. Sementsov, and M. M. Stepanov, Tech. Phys. 53(10), 1319 (2008).

    Article  Google Scholar 

  7. A. A. Bulgakov and V. R. Kovtun, Solid State Commun. 55, 781 (1985).

    Article  Google Scholar 

  8. I. E. Tamm, Zh. Eksp. Teor. Fiz. 3, 34 (1933).

    Google Scholar 

  9. I. M. Livshitz and L. N. Rozentsveig, Zh. Eksp. Teor. Fiz. 18, 1012 (1948).

    Google Scholar 

  10. A. A. Maradudin, Festkoerperprobleme 20, 25 (1981).

    Google Scholar 

  11. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).

    Article  ADS  Google Scholar 

  12. V. M. Agranovich, Sov. Phys.—Usp. 18(2), 99 (1975).

    Article  ADS  Google Scholar 

  13. A. N. Furs, V. M. Galynsky, and L. M. Barkovsky, J. Phys. A.: Math. Gen. 38, 8083 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. Ruppin, Phys. Lett. A. 277, 61 (2000).

    Article  ADS  Google Scholar 

  15. I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 69, 016617 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  16. A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, Phys. Rev. B: Condens. Matter 74, 045128 (2006).

    Article  ADS  Google Scholar 

  17. N. A. Gippius, S. G. Tikhodeev, A. Christ, J. Kuhl, and H. Giessen, Phys. Solid State 47(1), 145 (2005).

    Article  ADS  Google Scholar 

  18. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, Phys.—Usp. 53(3), 243 (2010).

    Article  ADS  Google Scholar 

  19. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).

    Article  ADS  Google Scholar 

  20. I. Zhelyazkov and V. Atanassov, Phys. Rep. 255, 79 (1995).

    Article  ADS  Google Scholar 

  21. M. M. Nazarov, L. S. Mukina, A. V. Shuvaev, D. A. Sapozhnikov, A. P. Shkurinov, and V. A. Trofimov, Laser Phys. Lett. 2, 471 (2005).

    Article  ADS  Google Scholar 

  22. G. N. Zhizhin, A. K. Nikitin, G. D. Bogomolov, V. V. Zavialov, Y. U. Jeong, B. C. Lee, S. H. Park, and H. J. Cha, Infrared Phys. Technol. 49, 108 (2006).

    Article  ADS  Google Scholar 

  23. B. A. Knyazev and A. V. Kuz’min, Vestn. Novosib. Gos. Univ., Ser. Fiz. 2, 108 (2007).

    Google Scholar 

  24. F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  25. A. A. Bulgakov and I. V. Fedorin, Tech. Phys. 56(4), 510 (2011).

    Article  Google Scholar 

  26. V. N. Lyubimov and D. G. Sannikov, Sov. Phys. Solid State 14(3), 575 (1972).

    Google Scholar 

  27. A. A. Bulgakov and V. K. Kononenko, Radiofiz. Elektron. 16, 63 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Fedorin.

Additional information

Original Russian Text © A.A. Bulgakov, I.V. Fedorin, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 8, pp. 1470–1477.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulgakov, A.A., Fedorin, I.V. Surface electromagnetic waves in thin-layer biaxial structure in a magnetic field. Phys. Solid State 54, 1566–1574 (2012). https://doi.org/10.1134/S1063783412080070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412080070

Keywords

Navigation