Skip to main content
Log in

Charge transport mechanism in intercalated Cu x HfSe2 compounds

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Alternating current resistivity measurements have been performed for the first time on intercalated Cu x HfSe2 (0 ≤ x ≤ 0.18) samples using the impedance spectroscopy technique together with direct current measurements. The results obtained indicate the hopping mechanism of charge transport in Cu x HfSe2 compounds. It has been found that an increase in the copper content in samples enhances relaxation processes. The ac conductivity exhibits frequency dispersion described by the universal dynamic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Inoue, H. P. Hughes, and A. D. Yoffe, Adv. Phys. 38, 565 (1989).

    Article  ADS  Google Scholar 

  2. Th. Pillo, J. Hayoz, H. Berger, F. Lévy, L. Schlapbach, and P. Aebi, Phys. Rev. B: Condens. Matter 61, 16213 (2000).

    Article  ADS  Google Scholar 

  3. D. L. Greenaway and R. Nitsche, J. Phys. Chem. Solids 26(9), 1445 (1965).

    Article  ADS  Google Scholar 

  4. C. Gaiser, T. Zandt, A. Krapf, R. Serverin, C. Janowitz, and R. Manzke, Phys. Rev. B: Condens. Matter 69, 075205 (2004).

    Article  ADS  Google Scholar 

  5. I. Taguchi, J. Phys. C: Solid State Phys. 14, 3221 (1981).

    Article  ADS  Google Scholar 

  6. N. V. Baranov, V. G. Pleshchev, N. V. Selezneva, E.M. Sherokalova, A. V. Korolev, V. A. Kazantsev, and A. V. Proshkin. J. Phys.: Condens. Matter 21, 506002 (2009).

    Article  Google Scholar 

  7. N. V. Selezneva, Candidate’s Dissertation (Ural Federal University, Yekaterinburg, 2011).

  8. N. V. Baranov, K. Inoue, V. I. Maksimov, A. S. Ovchinnikov, V. G. Pleschov, A. Podlesnyak, A. N. Titov, and N. V. Toporova, J. Phys.: Condens. Matter 16, 9243 (2004).

    Article  ADS  Google Scholar 

  9. Y. Tazuke, K. Kuwazawa, Y. Onishi, and T. Hashimoto, J. Phys. Soc. Jpn. 60, 2534 (1991).

    Article  ADS  Google Scholar 

  10. A. A. Titov, A. I. Merentsov, A. E. Kar’kin, A. N. Titov, and V. V. Fedorenko, Phys. Solid State, 51(2), 230 (2009).

    Article  ADS  Google Scholar 

  11. V. G. Pleshchev, N. V. Selezneva, and N. V. Baranov, Phys. Solid State, 54(4), 716 (2012).

    Article  ADS  Google Scholar 

  12. A. H. Reshak, J. Phys. Chem. A 113, 1635 (2009).

    Article  Google Scholar 

  13. M. Sasaki, A. Ohnishi, T. Kikuchi, M. Kitaura, K. Shimada, and H.-J. Kim, J. Low Temp. Phys. 161, 375 (2010).

    Article  ADS  Google Scholar 

  14. F. J. Di Salvo, J. A. Wilson, and J. V. Warszczak, Phys. Rev. Lett. 36, 885 (1976).

    Article  ADS  Google Scholar 

  15. V. G. Pleshchev, N. V. Baranov. D. A. Shishkin, A. V. Korolev, and A. D. Gorlov, Phys. Solid State, 53(10), 2054 (2011).

    Article  ADS  Google Scholar 

  16. N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 1979; Mir, Moscow, 1982), Vol. 1.

    Google Scholar 

  17. N. A. Poklonskii and N. I. Gorbachuk, Fundamentals of Impedance Spectroscopy of Composites (Belarusian State University, Minsk, 2005) [in Russian].

    Google Scholar 

  18. Yu. M. Poplavko, L. P. Pereverzeva, and I. P. Raevskii, Physics of Active Dielectrics (Southern Federal University, Rostov-on-Don, 2008) [in Russian].

    Google Scholar 

  19. Impedance Spectroscopy: Theory, Experiment and Applications, Ed. by E. Barsoukov and J. R. Macdonald (Wiley, New York, 2005).

    Google Scholar 

  20. P. Lunkenheimer and A. Loidl, Phys. Rev. Lett. 91, 207601 (2003).

    Article  ADS  Google Scholar 

  21. A. S. Nowick, A. V. Vaysleyb, and I. Kuskovsky, Phys. Rev. B: Condens. Matter 58, 8398 (1998).

    Article  ADS  Google Scholar 

  22. S. Kallel, A. Nasri, N. Kallel, H. Rahmouni, O. Peña, K. Khirouni, and M. Oumezzine, Physica B (Amsterdam) 406, 2172 (2011).

    Article  ADS  Google Scholar 

  23. A. I. Artamkin, A. A. Dobrovol’skii, A. A. Vinokurov, V. P. Zlomanov, S. Yu. Gavrilkin, O. M. Ivanenko, K. V. Mitsen, L. I. Ryabova, and D. R. Khokhlov, Semiconductors 44(12), 1543 (2010).

    Article  ADS  Google Scholar 

  24. W. Li and R. W. Schwartz, Appl. Phys. Lett. 89, 242906 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pleshchev.

Additional information

Original Russian Text © V.G. Pleshchev, N.V. Baranov, N.V. Melnikov, N.V. Selezneva, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 7, pp. 1271–1275.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleshchev, V.G., Baranov, N.V., Melnikova, N.V. et al. Charge transport mechanism in intercalated Cu x HfSe2 compounds. Phys. Solid State 54, 1348–1352 (2012). https://doi.org/10.1134/S1063783412070293

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412070293

Keywords

Navigation