Skip to main content
Log in

Ab initio calculations of neutral and charged impurity centers of manganese and chromium in strontium titanate

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper presents the results of ab initio calculations of the equilibrium geometry, the electronic structure, and the spin and charge densities for neutral and negatively charged defects produced by the Mn and Cr impurities in the B position of the SrTiO3 structure. It has been shown that, in both cases, the neutral defect is an acceptor center, while the singly charged defect is a donor center. It has been found that doubly charged defects are polar, have the symmetry C 4v, and reside in the ionic configurations 5Mn3+ + 3Ti3+ and 4Cr3+ + 3Ti3+, respectively. In each case, there is a pair of almost energy-degenerate electronic states (4 B 1 and 6 B 1 for Mn and 3 A 1 and 5 A 1 for Cr), which differ only in the direction of the spin of the electron polaron localized at one of the neighboring titanium atoms. For the manganese impurity, the energy of the polar state 6 B 1 is only 0.174 eV lower than that of the state 6 A 1g (O h ) with the Mn2+ ion in the high-spin state. A new mechanism of dielectric relaxation in STO: Mn has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Lemanov, in Defects and Surface-Induced Effects in Advanced Perovskites, Ed. by G. Borstel, A. Krumins, and D. Millers (Kluwer, New York, 2000), p. 329.

    Chapter  Google Scholar 

  2. O. E. Kvyatkovskii, Phys. Solid State 43(8), 1401 (2001).

    Article  ADS  Google Scholar 

  3. V. V. Lemanov, E. P. Smirnova, A. V. Sotnikov, and M. Weihnacht, Phys. Solid State 46(8), 1442 (2004).

    Article  ADS  Google Scholar 

  4. A. Tkach, P. M. Vilarinho and A. L. Kholkin, Phys. Rev. B: Condens. Matter 73, 104113 (2006).

    Article  ADS  Google Scholar 

  5. A. Tkach, P. M. Vilarinho, and A. L. Kholkin, Acta Mater. 54, 5385 (2006).

    Article  Google Scholar 

  6. V. V. Laguta, I. V. Kondakova, I. P. Bykov, M. D. Glinchuk, A. Tkach, P. M. Vilarinho, and L. Jastrabik, Phys. Rev. B: Condens. Matter 76, 054104 (2007).

    Article  ADS  Google Scholar 

  7. M. Savinov, V. A. Trepakov, P. P. Syrnikov, V. Železny, J. Pokorny, A. Dejneka, L. Jastrabík, and P. Galinetto, J. Phys.: Condens. Matter 20, 095221 (2008).

    Article  ADS  Google Scholar 

  8. O. E. Kvyatkovskii, Phys. Solid State 51(5), 982 (2009).

    Article  ADS  Google Scholar 

  9. O. E. Kvyatkovskii, Bull. Russ. Acad. Sci.: Phys. 74(9), 1190 (2010).

    Article  Google Scholar 

  10. O. E. Kvyatkovskii, Crystallogr. Rep. 56(1), 3 (2011).

    Article  ADS  Google Scholar 

  11. W. Kleemann, S. Bedanta, P. Borisov, V.V. Shvartsman, S. Miga, J. Dec, A. Tkach, and P. Vilarinho, Eur. Phys. J. B 71, 407 (2009); V. V. Shvartsman, S. Bedanta, P. Borisov, W. Kleemann, A. Tkach, and P. M. Vilarinho, Phys. Rev. Lett. 101, 165704 (2008).

    Article  ADS  Google Scholar 

  12. Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, and A. Beck, Appl. Phys. Lett. 78, 3738 (2001).

    Article  ADS  Google Scholar 

  13. G. I. Meijer, U. Staub, M. Janousch, S. L. Johnson, B. Delley, and T. Neisius, Phys. Rev. B: Condens. Matter 72, 155102 (2005).

    Article  ADS  Google Scholar 

  14. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).

    Article  ADS  Google Scholar 

  15. M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, Adv. Mater. (Weinheim) 19, 2232 (2007).

    Article  Google Scholar 

  16. G. I. Meijer, Science (Washington) 319, 1625 (2008).

    Article  Google Scholar 

  17. F. La Mattina, J. G. Bednorz, S. F. Alvarado, A. Shengelaya, K. A. Müller, and H. Keller, Phys. Rev. B: Condens. Matter 80, 075122 (2009).

    Article  ADS  Google Scholar 

  18. W. Luo, W. Duan, S. G. Louie, and M. L. Cohen, Phys. Rev. B: Condens. Matter 70, 214109 (2004).

    Article  ADS  Google Scholar 

  19. D. Ricci, G. Bano, G. Pacchioni, and F. Illas, Phys. Rev. B: Condens. Matter 68, 224105 (2003).

    Article  ADS  Google Scholar 

  20. J. P. Buban, H. Iddir, and S. Ögüt, Phys. Rev. B: Condens. Matter 69, 180102 (2004).

    Article  ADS  Google Scholar 

  21. J. Carrasco, F. Illas, N. Lopez, E. A. Kotomin, Yu. F. Zhukovskii, R. A. Evarestov, Yu. A. Mastrikov, S. Piskunov, and J. Maier, Phys. Rev. B: Condens. Matter 73, 064106 (2006).

    Article  ADS  Google Scholar 

  22. R. A. Evarestov, S. Piskunov, E. A. Kotomin, and G. Borstel, Phys. Rev. B: Condens. Matter 67, 064101 (2003).

    Article  ADS  Google Scholar 

  23. O. E. Kvyatkovskii, Phys. Solid State 44(6), 1135 (2002).

    Article  ADS  Google Scholar 

  24. O. E. Kvyatkovskii, Ferroelectrics 314, 143 (2005).

    Article  Google Scholar 

  25. I. V. Kondakova, R. O. Kuzian, L. Raymond, R. Hayn, and V. V. Laguta, Phys. Rev. B: Condens. Matter 79, 134117 (2009).

    Article  ADS  Google Scholar 

  26. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  27. A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys. 38, 3098 (1988).

    Article  ADS  Google Scholar 

  28. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter 37, 785 (1988).

    Article  ADS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Computer Code GAUSSIAN 03, revision B.05 (Gaussian, Pittsburgh, Pennsylvania, United States, 2003).

  30. T. H. Dunning, J. Chem. Phys. 55, 716 (1971).

    Article  ADS  Google Scholar 

  31. T. H. Dunning and P. J. Hay, in Methods of Electronic Structure Theory, Ed. by H. F. Schaefer III (Plenum, New York, 1977), Vol. 3.

    Google Scholar 

  32. I. Hyla-Kryspin, J. Demuynck, A. Strich, and M. Benard, J. Chem. Phys. 75, 3954 (1981).

    Article  ADS  Google Scholar 

  33. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970); A. J. H. Wachters, IBM Tech. Rep., No. RJ584 (1969).

    Article  ADS  Google Scholar 

  34. C. W. Bauschlicher, Jr., S. R. Langhoff, and L. A. Barnes, J. Chem. Phys. 91, 2399 (1989).

    Article  ADS  Google Scholar 

  35. T. H. Dunning, J. Chem. Phys. 53, 2823 (1970).

    Article  ADS  Google Scholar 

  36. W. J. Stevens, H. Basch, and M. Krauss, J. Chem. Phys. 81, 6026 (1984); W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Can. J. Chem. 70, 612 (1992).

    Article  ADS  Google Scholar 

  37. C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).

    MATH  Google Scholar 

  38. S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, New York, 1970).

    Google Scholar 

  39. S. A. Basun, U. Bianchi, V. E. Bursian, A. A. Kaplyan- skii, W. Kleeman, L. S. Sochava, and V. S. Vikhnin, J. Lumin. 66–67, 526 (1996).

    Google Scholar 

  40. A. J. Silversmith, W. Lenth, K. W. Blazey, and R. M. Macfarlane, J. Lumin. 59, 269 (1994).

    Article  Google Scholar 

  41. Z. Bryknar, V. Trepakov, Z. Potucek, and L. Jastrabik, J. Lumin. 87–89, 605 (2000).

    Article  Google Scholar 

  42. I. Levin, V. Krayzman, J. C. Woicik, A. Tkach, and P. M. Vilarinho, Appl. Phys. Lett. 96, 052904 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Kvyatkovskii.

Additional information

Original Russian Text © O.E. Kvyatkovskii, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 7, pp. 1317–1326.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvyatkovskii, O.E. Ab initio calculations of neutral and charged impurity centers of manganese and chromium in strontium titanate. Phys. Solid State 54, 1397–1407 (2012). https://doi.org/10.1134/S1063783412070220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412070220

Keywords

Navigation