Skip to main content
Log in

Metamagnetic phase transitions induced by static and pulsed fields in (Sm0.5Gd0.5)0.55Sr0.45MnO3 ceramics

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

It has been found that the magnetic susceptibility of (Sm0.5Gd0.5)0.55Sr0.45MnO3 ceramic samples in zero external magnetic field exhibits a sharp peak near the temperature of 48.5 K with a small temperature hysteresis that does not depend on the frequency of measurements and is characteristic of the phase transition to an antiferromagnetic state with a long-range charge orbital ordering, which is accompanied by an increase in the magnetic susceptibility with a decrease in the temperature. The magnetization isotherms in static and pulsed magnetic fields at temperatures below 60 K demonstrate the occurrence of an irreversible metamagnetic transition to a homogeneous ferromagnetic state with a critical transition field independent of the measurement temperature, which, apparently, is associated with the destruction of the insulating state with a long-range charge ordering. In the temperature range 60 K ≤ T ≤ 150 K, the ceramic samples undergo a magnetic-field-induced reversible phase transition to the ferromagnetic state, which is similar to the metamagnetic transition in the low-temperature phase and is caused by the destruction of local charge/orbital correlations. With an increase in the temperature, the critical transition fields increase almost linearly and the field hysteresis disappears. Near the critical fields of magnetic phase transitions, small ultra-narrow magnetization steps have been revealed in pulsed fields with a high rate of change in the magnetic field of ∼400 kOe/μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hebert, V. Hardy, A. Maignan, R. Mahendiran, M. Hervieu, C. Martin, and B. Raveau, J. Solid State Chem. 165, 6 (2002).

    Article  ADS  Google Scholar 

  2. S. Hebert, A. Maignan, V. Hardy, C. Martin, M. Hervieu, and B. Raveau, Solid State Commun. 122, 335 (2002).

    Article  ADS  Google Scholar 

  3. R. Mahendiran, A. Maignan, S. Hebert, C. Martin, M. Hervieu, B. Raveau, J. F. Mitchell, and P. Schiffer, Phys. Rev. Lett. 89(28), 286602 (2002).

    Article  ADS  Google Scholar 

  4. V. Hardy, S. Hebert, A. Maignan, C. Martin, M. Hervieu, and B. Raveau, J. Magn. Magn. Mater. 264, 183 (2003).

    Article  ADS  Google Scholar 

  5. S. Hebert, A. Maignan, V. Hardy, C. Martin, M. Hervieu, B. Raveau, R. Mahendiran, and P. Schiffer, Eur. Phys. J. B 29, 419 (2002).

    Article  ADS  Google Scholar 

  6. L. Ghivelder, R. S. Freitas, M. G. das Virgens, M. A. Continentino, H. Martinho, L. Granja, M. Quintero, G. Leyva, P. Levy, and F. Parisi, Phys. Rev. B: Condens. Matter 69(21), 214414 (2004).

    Article  ADS  Google Scholar 

  7. V. Podzorov, B. G. Kim, V. Kiryukhin, M. E. Gershenson, and S.-W. Cheong, Phys. Rev. B: Condens. Matter 64, 140406 (2001).

    Article  ADS  Google Scholar 

  8. N. D. Mathur and P. B. Littlewood, Solid State Commun. 119, 271 (2001).

    Article  ADS  Google Scholar 

  9. M. Uehara, B. Barbara, B. Dieny, and P. C. E. Stamp, Phys. Lett. A 114, 23 (1986).

    Article  ADS  Google Scholar 

  10. V. Podzorov, C. H. Chen, M. E. Gershenson, and S.-W. Cheong, Europhys. Lett. 55, 411 (2001).

    Article  ADS  Google Scholar 

  11. K. H. Kim, M. Uehara, C. Hess, P. A. Sharma, and S.-W. Cheong, Phys. Rev. Lett. 84, 2961 (2000).

    Article  ADS  Google Scholar 

  12. A. M. Balagurov, V. Y. Pomjakushin, D. V. Sheptyakov, V. L. Aksenov, N. A. Babushkina, L. M. Belova, O. Y. Gorbenko, and A. R. Kaul, Eur. Phys. J. B 19, 215 (2001).

    Article  ADS  Google Scholar 

  13. Y. Tomioka, Y. Okimoto, J. H. Jung, R. Kumai, and Y. Tokura, Phys. Rev. B: Condens. Matter 68(9), 094417 (2003).

    Article  ADS  Google Scholar 

  14. Y. Tokura, Rep. Prog. Phys. 69, 797 (2006).

    Article  ADS  Google Scholar 

  15. H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritoma, and Y. Tokura, Science (Washington) 270, 961 (1995).

    Article  ADS  Google Scholar 

  16. H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritoma, and Y. Tokura, Phys. Rev. Lett. 74, 5108 (1995).

    Article  ADS  Google Scholar 

  17. M. Tokunaga, N. Miura, Y. Tomioka, and Y. Tokura, Phys. Rev. B: Condens. Matter 57, 5259 (1998).

    Article  ADS  Google Scholar 

  18. R. Mahendiran, B. Raveau, M. Hervieu, C. Michel, and A. Maignan, Phys. Rev. B: Condens. Matter 64, 064424 (2001).

    Article  ADS  Google Scholar 

  19. I. G. Deac, S. V. Diaz, B. G. Kim, S.-W. Cheong, and P. Schiffer, Phys. Rev. B: Condens. Matter 65, 174426 (2002).

    Article  ADS  Google Scholar 

  20. I. G. Deac, J. F. Mitchell, and P. Schiffer, Phys. Rev. B: Condens. Matter 63, 172408 (2001).

    Article  ADS  Google Scholar 

  21. A. Sundaresan, A. Maignan, and B. Raveau, Phys. Rev. B: Condens. Matter 55, 5596 (1997).

    Article  ADS  Google Scholar 

  22. Joonghoe Dho and N. H. Hur, Phys. Rev. B: Condens. Matter 67, 214414 (2003).

    Article  ADS  Google Scholar 

  23. A. V. Kalinov, L. M. Fisher, I. F. Voloshin, N. A. Babushkina, D. I. Khomskii, and T. T. M. Palstra, J. Magn. Magn. Mater. 300, 399 (2006).

    Article  ADS  Google Scholar 

  24. D. S. Rana and S. K. Malic, Phys. Rev. B: Condens. Matter 74, 052407 (2006).

    Article  ADS  Google Scholar 

  25. Yu Li, Jipeng Miao, Yu Sui, Qian Cheng, Wei Zhang, Xianjie Wang, and Wenhui Su, J. Alloys Compd. 458, 11 (2008).

    Article  Google Scholar 

  26. A. V. Kalinov, L. M. Fisher, I. F. Voloshin, N. A. Babushkina, C. Martin, and A. Mfignan, J. Phys. 150, 042081 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. N. Bukhanko.

Additional information

Original Russian Text © F.N. Bukhanko, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 6, pp. 1128–1135.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukhanko, F.N. Metamagnetic phase transitions induced by static and pulsed fields in (Sm0.5Gd0.5)0.55Sr0.45MnO3 ceramics. Phys. Solid State 54, 1199–1206 (2012). https://doi.org/10.1134/S106378341206008X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341206008X

Keywords

Navigation