Skip to main content
Log in

Determination of the Néel temperature from measurements of the thermal conductivity of the Co3O4 antiferromagnet nanostructured in porous glass channels

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The Néel temperature T N(n) of the Co3O4 antiferromagnet nanostructured in channels of porous borosilicate glass with channel cross sections of ∼7 nm has been determined from thermal conductivity measurements. It has been shown that the Néel temperature T N(n) of this nanomaterial is approximately equal to 20 K, which is considerably lower than T N = (30–40) K for the bulk Co3O4 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sako and K. Ohshima, J. Phys. Soc. Jpn. 64, 944 (1995).

    Article  ADS  Google Scholar 

  2. S. Sako, Y. Umemura, K. Ohshima, M. Sakai, and S. Bandow, J. Phys. Soc. Jpn. 65, 280 (1996).

    Article  ADS  Google Scholar 

  3. I. V. Golosovsky, I. Mirebeau, G. Andre, D. A. Kurdyukov, Yu. A. Kumzerov, and S. B. Vakhrushev, Phys. Rev. Lett. 86, 5783 (2001).

    Article  ADS  Google Scholar 

  4. I. V. Golosovsky, I. Mirebeau, V. P. Sakhenko, D. A. Kurdyukov, and Yu. A. Kumzerov, Phys. Rev. B: Condens. Matter 72, 144409 (2005).

    Article  ADS  Google Scholar 

  5. C. H. Wang, S. N. Baker, M. D. Lumsden, S. E. Nagler, W. T. Heller, G. A. Baker, P. D. Deen, L. M. Granswick, Y. Su, and A. D. Christianson, arXiv:1106.3090vl [cond-mat. str-el] (2011).

  6. I. V. Golosovsky, I. Mirebeau, G. André, M. Tovar, D. M. Tobbens, D. A. Kurdyukov, and Yu. A. Kumzerov, Phys. Solid State 48(11), 2130 (2006).

    Article  ADS  Google Scholar 

  7. D. Alders, L. H. Tjeng, F. C. Voogt, T. Hibma, G. A. Sawatzky, C. T. Chen, J. Vogel, M. Sacchi, and S. Iacobucci, Phys. Rev. B: Condens. Matter 57, 11623 (1998).

    Article  ADS  Google Scholar 

  8. S. Takada, M. Fujii, S. Kohiki, T. Balasaki, H. Deguchi, M. Mitome, and M. Oku, Nano Lett. 1, 379 (2001).

    Article  ADS  Google Scholar 

  9. S. A. Makhlouf, J. Magn. Magn. Mater. 246, 184 (2002).

    Article  ADS  Google Scholar 

  10. X. Wang, X. Chen, L. Gao, H. Zheng, Z. Zhang, and Y. Qian, J. Phys. Chem. B 108, 16401 (2004).

    Article  Google Scholar 

  11. S. Li, H. Bi, B. Cui, F. Zhang, Y. Du, X. Jiang, C. Yang, Q. Yu, and X. Zhu, J. Appl. Phys. 95, 7420 (2004).

    Article  ADS  Google Scholar 

  12. D. A. Resnik, K. Gilmore, Y. U. Idzerda, M. T. Klem, M. Allen, T. Douglass, E. Arenholz, and M. Young, J. Appl. Phys. 99, 08Q501 (2006).

    Article  Google Scholar 

  13. E. L. Salabas, A. Rumplecker, F. Kleitz, F. Radu, and F. Schuth, Nano Lett. 6, 2977 (2006).

    Article  ADS  Google Scholar 

  14. P. Dutta, M. S. Seehra, S. Thota, and J. Kumar, J. Phys: Condens. Matter 20, 015218 (2008).

    Article  ADS  Google Scholar 

  15. S. Thota, A. Kumar, and J. Kumar, Matter. Sci. Eng., B 164, 30 (2009).

    Article  Google Scholar 

  16. W. L. Roth, Phys. Chem. Solids 25, 1 (1964).

    Article  ADS  Google Scholar 

  17. A. Goldschmith, Handbook of Thermophysical Properties of Materials (Macmillan, New York, 1961).

    Google Scholar 

  18. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1996).

    Google Scholar 

  19. L. M. Khriplovich, L. M. Khlopov, and I. E. Paukov, J. Chem. Thermodyn. 14, 207 (1982).

    Article  Google Scholar 

  20. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).

    Google Scholar 

  21. L. S. Parfen’eva, I. A. Smirnov, A. V. Fokin, H. Misiorek, J. Mucha, and A. Jezowski, Phys. Solid State 45(2), 381 (2003).

    Article  ADS  Google Scholar 

  22. Yu. A. Kumzerov, N. F. Kartenko, L. S. Parfen’eva, I. A. Smirnov, A. V. Fokin, D. Wlosewicz, H. Misiorek, and A. Jezowski, Phys. Solid State 53(5), 1099 (2011).

    Article  ADS  Google Scholar 

  23. F. B. Lewis and N. H. Saunders, J. Phys. C: Solid State Phys. 6, 2525 (1973).

    Article  ADS  Google Scholar 

  24. A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Smirnov.

Additional information

Original Russian Text © Yu.A. Kumzerov, N.F. Kartenko, L.S. Parfen’eva, I.A. Smirnov, A.A. Sysoeva, H. Misiorek, A. Jezowski, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 5, pp. 1000–1003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumzerov, Y.A., Kartenko, N.F., Parfen’eva, L.S. et al. Determination of the Néel temperature from measurements of the thermal conductivity of the Co3O4 antiferromagnet nanostructured in porous glass channels. Phys. Solid State 54, 1066–1069 (2012). https://doi.org/10.1134/S1063783412050228

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412050228

Keywords

Navigation