Skip to main content
Log in

Electro-optical transitions in a semiconductor cylindrical nanolayer

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The single-electron states in a quantized cylindrical layer have been considered in the presence of a moderate homogeneous electric field, when the energy imparted to a charge carrier by the electric field becomes comparable to the energy of rotational motion of this particle. The corresponding energy spectrum and the envelopes of the wave functions of charge carriers in the layer have been obtained in an explicit form. The electro-optical absorption band of a weak electromagnetic wave has been calculated. It has been found that the absorption intensity increases with an increase in the intensity of the electric field. The external electric field leads to an explicit dependence of the absorption intensity on the effective masses of charge carriers. The absorption intensity decreases as the difference between the effective masses of charge carriers increases. There is also an effective broadening of the band gap, which is determined by the geometrical dimensions of the sample and the magnitude of the external field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Law, J. Goldberger, and P. Yang, Annu. Rev. Mater. Res. 34, 83 (2004); J. Martine-Duart, R. J. Martin-Palmer, and F. Agullo-Rueda, Nanotechnology for Microelectronics and Optoelectronics (Cambridge University Press, New York, 2005).

    Article  ADS  Google Scholar 

  2. G. Shen, Y. Bando, and D. Golberg, Int. J. Nanotechnol. 4, 730 (2007); Ch. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. A. Sung, and H. Shin, Chem. Mater. 20, 756 (2008).

    Google Scholar 

  3. Li Xiuling, J. Phys. D: Appl. Phys. 41, 193001 (2008).

    Article  Google Scholar 

  4. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, and P. Yang, Nature (London) 422, 599 (2003); J. Goldberger, R. Fan, and P. Yang, Acc. Chem. Res. 39, 239 (2006); J. M. de Almeida, Phys. Lett. A 374, 877 (2010); S. Adachi, Properties of Semiconductors Alloys: Group-IV, III-V and II–VI Semiconductors (Wiley, New York, 2009).

    Article  ADS  Google Scholar 

  5. N. V. Tkach, I. V. Pronishin, and A. M. Makhanets, Phys. Solid State 40(3), 514 (1998).

    Article  ADS  Google Scholar 

  6. N. V. Tkach and V. A. Golovatskii, Phys. Solid State 43(2), 365 (2001).

    Article  ADS  Google Scholar 

  7. R. N. Musin and X.-Q. Wang, Phys. Rev. B: Condens. Matter 74, 165308 (2006); L. E. Ramos, J. Furthmüller, and F. Bechstedt, Phys. Rev. B: Condens. Matter 72, 045351 (2005).

    Article  ADS  Google Scholar 

  8. N. Malkova and C. Z. Ning, Phys. Rev. B: Condens. Matter 75, 155407 (2007).

    Article  ADS  Google Scholar 

  9. V. A. Harutyunyan, K. S. Aramjan, and H. Sh. Petrosjan, Physica E (Amsterdam) 21(1), 111 (2004).

    Article  ADS  Google Scholar 

  10. V. A. Arutyunyan, S. L. Arutyunyan, G. O. Demirchyan, and G. Sh. Petrosyan, Semiconductors 39(7), 805 (2005).

    Article  ADS  Google Scholar 

  11. V. A. Harutyunyan, Appl. Surf. Sci. 256, 455 (2009).

    Article  ADS  Google Scholar 

  12. V. A. Harutyunyan, Physica E (Amsterdam) 41(4), 695 (2009).

    Article  ADS  Google Scholar 

  13. V. A. Harutyunyan, Phys. Solid State 52(8), 1744 (2010).

    Article  ADS  Google Scholar 

  14. V. A. Harutyunyan, J. Appl. Phys. 109(1), 014325 (2011).

    Article  ADS  Google Scholar 

  15. V. A. Harutyunyan, Physica E (Amsterdam) 39(1), 37 (2007).

    Article  ADS  Google Scholar 

  16. J. W. Haus, H. S. Zhou, I. Honma, and H. Komiyama, Phys. Rev. B: Condens. Matter 47, 1359 (1993).

    Article  ADS  Google Scholar 

  17. D. Schooss, A. Mews, A. Eychmüller, and H. Weller, Phys. Rev. B: Condens. Matter 49, 17072 (1994).

    Article  ADS  Google Scholar 

  18. V. G. Kogan and V. Z. Kresin, Sov. Phys. Solid State 11(11), 2618 (1969).

    Google Scholar 

  19. W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1950; Inostrannaya Literatura, Moscow, 1954).

    Google Scholar 

  20. E. Kamke, Differentialgleichungen Losungsmethoden und Losungen (Chelsea, New York, 1959; Nauka, Moscow, 1971) [in German and in Russian].

    Google Scholar 

  21. H. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953; Nauka, Moscow, 1967), Vol. 3.

    Google Scholar 

  22. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Nauka, Moscow, 1981; Gordon and Breach, New York, 1986).

    Google Scholar 

  23. H. Haug and S. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. (World Scientific, Singapore, 2006); G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, France, 1998).

    Google Scholar 

  24. O. Stier, Electronic and Optical Properties of Quantum Dots and Wires (Wissenschaft und Technik, Berlin, 2001); P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics (Wiley, New York, 2005).

    Google Scholar 

  25. B. M. Askerov, Electron Transport Phenomena in Semiconductors (Nauka, Moscow, 1985; World Scientific, Singapore, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Harutyunyan.

Additional information

Original Russian Text © V.A. Harutyunyan, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 5, pp. 1028–1034.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harutyunyan, V.A. Electro-optical transitions in a semiconductor cylindrical nanolayer. Phys. Solid State 54, 1096–1103 (2012). https://doi.org/10.1134/S1063783412050046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412050046

Keywords

Navigation