Skip to main content
Log in

Formation mechanisms of nanocomposite layers based on multiwalled carbon nanotubes and non-stoichiometric tin oxide

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Nanocomposite layers based on multiwalled carbon nanotubes (MWCNTs) and non-stoichiometric tin oxide (SnO x ) have been grown by magnetron deposition and CVD methods. In the case of the CVD method, the study of the structure and phase composition of obtained nanocomposite layers has shown that a tin oxide “superlattice” is formed in the MWCNT layer volume, fixed by SnO x islands on the MWCNT surface. During magnetron deposition, the MWCNT surface is uniformly coated with tin oxide islands, which causes a change in properties of individual nanotubes. Electrical measurements have revealed the sensitivity of nanocomposite layers to (NO2) molecule adsorption, which is qualitatively explained by a change in the conductivity of the semiconductor fraction of p-type MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Meixner and U. Lampe, Sens. Actuators, B 33, 198 (1996).

    Article  Google Scholar 

  2. Y. X. Liang, Y. J. Chen, and T. H. Wang, Appl. Phys. Lett. 85, 666 (2004).

    Article  ADS  Google Scholar 

  3. R. Angelucci, A. Poggi, L. Dori, G. C. Cardinali, A. Parisini, A. Tagliani, M. Mariasaldi, and F. Cavani, Sens. Actuators 74, 95 (1999).

    Article  Google Scholar 

  4. C. Cobianu, C. Savaniu, O. Buiu, D. Dascalu, M. Zaharescu, C. Parlog, A. van den Berg, and B. Pecz, Sens. Actuators, B 43, 114 (1997).

    Article  Google Scholar 

  5. A. G. Kudashov, A. V. Okotrub, N. F. Yudanov, A. I. Romanenko, L. G. Bulusheva, A. G. Abrosimov, A. L. Chuvilin, E. M. Pazhetov, and A. I. Boronin, Phys. Solid State 44(4), 652 (2002).

    Article  ADS  Google Scholar 

  6. A. G. Kudashov, A. V. Okotrub, L. G. Bulusheva, I. P. Asanov, Yu. V. Shubin, N. F. Yudanov, L. I. Yudanova, V. S. Danilovich, and O. G. Abrosimov, J. Phys. Chem. B 108, 9048 (2004).

    Article  Google Scholar 

  7. A. G. Kudashov, A. G. Kurenya, A. V. Okotrub, A. V. Gusel’nikov, V. S. Danilovich, and L. G. Bulusheva, Tech. Phys. 52 (12), 1627 (2007).

    Article  Google Scholar 

  8. V. V. Bolotov, V. E. Kan, N. A. Davletkil’deev, I. V. Ponomareva, O. V. Krivozubov, A. V. Okotrub, and A. G. Kudashov, Perspekt. Mater., No. 3, 24 (2009).

  9. V. V. Bolotov, V. E. Kan, I. V. Ponomareva, O. V. Krivozubov, N. A. Davletkil’deev, Yu. A. Sten’kin, A. G. Kudashov, V. S. Danilovich, and A. V. Okotrub, Perspekt. Mater., No. 1, 5 (2007).

  10. K. L. Strong, D. P. Anderson, K. Lafdi, and J. N. Kuhn, Carbon 41, 1477 (2003).

    Article  Google Scholar 

  11. S. Gajewski, H.-E. Maneck, U. Knoll, D. Neubert, I. Dorfel, R. Mach, B. Strau, and J. F. Friedrich, Diamond Relat. Mater. 12, 816 (2003).

    Article  ADS  Google Scholar 

  12. Handbook of Auger Electron Spectroscopy, Ed. by L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E. Weber (Physical Electronics, Chanhassen, Minnesota, United States, 1986), p. 8.

    Google Scholar 

  13. Handbook of X-Ray Photoelectron Spectroscopy, Ed. by C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg (Physical Electronics, Chanhassen, Minnesota, United States, 1986), p. 10.

    Google Scholar 

  14. Y.-J. Choi, In-S. Hwang, J.-G. Park, K. J. Choi, J.-H. Park, and J.-H. Lee, Nanotechnology 19, 095508 (2008).

    Article  ADS  Google Scholar 

  15. M. S. Dresselhaus and P. C. Eklund, Adv. Phys. 49, 705 (2000).

    Article  ADS  Google Scholar 

  16. J. M. Benoit, J. P. Buisson, O. Chauvet, C. Godon, and S. Lefrant, Phys. Rev. B: Condens. Matter 66, 073417 (2002).

    Article  ADS  Google Scholar 

  17. A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, New J. Phys. 5, 139.1 (2003).

    Article  Google Scholar 

  18. L.-M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu, and D. G. Pettifor, Phys. Rev. Lett. 85, 3249 (2000).

    Article  ADS  Google Scholar 

  19. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, and R. Saito, Carbon 40, 2043 (2002).

    Article  Google Scholar 

  20. E. G. Rakov, in Nanotubes and Nanofibers, Ed. by Y. Gogotsi (Taylor and Francis, Boca Raton, Florida, United States, 2006), Chap. 2.

    Google Scholar 

  21. M. Schmid, C. Goze-Bac, S. Krämer, S. Roth, M. Mehring, C. Mathis, and P. Petit, Phys. Rev. B: Condens. Matter 74, 073416 (2006).

    Article  ADS  Google Scholar 

  22. J. Cambedouzou, J.-L. Sauvajol, A. Rahmani, E. Flahaut, A. Peigney, and C. Laurent, Phys. Rev. B: Condens. Matter 69, 235422 (2004).

    Article  ADS  Google Scholar 

  23. X. Liu, T. Pichler, M. Knupfer, and J. Fink, Phys. Rev. B: Condens. Matter 70, 245435 (2004).

    Article  ADS  Google Scholar 

  24. O. Zhou, B. Gao, C. Bower, L. Fleming, and H. Shimoda, Mol. Cryst. Liq. Cryst. 340, 541 (2000).

    Article  Google Scholar 

  25. C. Cantalini, L. Valentini, I. Armentano, L. Lozzi, J. M. Kenny, and S. Santuccu, Sens. Actuators, B 95, 195 (2003).

    Article  Google Scholar 

  26. C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J. M. Kenny, and S. Santucci, Sens. Actuators, B 93, 333 (2003).

    Article  Google Scholar 

  27. I. Sayago, H. Santos, M. C. Horrillo, M. Aleixandre, M. J. Fernández, E. Terrado, I. Tacchini, R. Aroz, W. K. Maser, A. M. Benito, M. T. Martinez, J. Gutiérrez, and E. Munoz, Talanta 77, 758 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bolotov.

Additional information

Original Russian Text © V.V. Bolotov, V.E. Kan, P.M. Korusenko, S.N. Nesov, S.N. Povoroznyuk, I.V. Ponomareva, V.E. Roslikov, Yu.A. Sten’kin, R.V. Shelyagin, E.V. Knyazev, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 1, pp. 154–161.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolotov, V.V., Kan, V.E., Korusenko, P.M. et al. Formation mechanisms of nanocomposite layers based on multiwalled carbon nanotubes and non-stoichiometric tin oxide. Phys. Solid State 54, 166–173 (2012). https://doi.org/10.1134/S1063783412010076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412010076

Keywords

Navigation