Skip to main content

Filler-matrix thermal boundary resistance of diamond-copper composite with high thermal conductivity

Abstract

A composite material with a high thermal conductivity is obtained by capillary infiltration of copper into a bed of diamond particles of 400 μm size, the particles having been pre-coated with tungsten. The measured thermal conductivity of the composite decreases from 910 to 480 W m−1 K−1 when the coating thickness is increased from 110 to 470 nm. Calculations of the filler/matrix thermal boundary resistance R and the thermal conductivity of the coating layer λ i using differential effective medium, Lichtenecker’s and Hashin’s models give similar numerical values of R and λ i ≈ 1.5 W m−1 K−1. The minimal thickness of the coating h ∼ 100 nm necessary for ensuring production of a composite while maximizing its thermal conductivity, is of the same order as the free path of the heat carriers in diamond (phonons) and in copper (electrons). The heat conductance of the diamond/tungsten carbide coating/copper interface when h is of this thickness is estimated as (0.8–1) × 108 W m−2 K−1 and is at the upper level of values characteristic for perfect dielectric/metal boundaries.

This is a preview of subscription content, access via your institution.

References

  1. S. V. Kidalov and F. M. Shakhov, Materials 2, 2467 (2009).

    Article  ADS  Google Scholar 

  2. High Thermal Conductivity Materials, Ed. by S. L. Shinde and J. S. Goela (Springer, New York, 2006).

    Google Scholar 

  3. Synthetic CVD Diamond Products from Element Six; http://www.e6cvd.com.

  4. ExtreMat-Heat Sink Materials; http://www.extremat.org/heat-sink-materials?Edition=en.

  5. K. Hanada, K. Matsuzaki, and T. Sano, J. Mater. Process. Technol. 153–154, 514 (2004).

    Article  Google Scholar 

  6. J. Barcena, J. Maudes, M. Vellvehi, X. Jorda, I. Obieta, C. Guraya, L. Bilbao, C. Jimenez, C. Merveille, and J. Coleto, Acta Astronaut. 62, 422 (2008).

    Article  ADS  Google Scholar 

  7. K. Yoshida and H. Morigami, Microelectron. Reliab. 44, 303 (2004).

    Article  Google Scholar 

  8. T. Schubert, L. Ciupinski, W. Zielinski, A. Michalski, T. Weibgarber, and B. Kieback, Scr. Mater. 58, 263 (2008).

    Article  Google Scholar 

  9. L. Weber and R. Tavangar, Scr. Mater. 57, 988 (2007).

    Article  Google Scholar 

  10. L. Weber and R. Tavangar, Adv. Mater. Res. 59, 111 (2009).

    Article  Google Scholar 

  11. A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, J. Mater. Sci. 46, 1424 (2011).

    Article  ADS  Google Scholar 

  12. Surface Properties of Melts and Solids and Their Use in Materials Science, Ed. by Yu. V. Naidich (Naukova Dumka, Kiev, 1991) [in Russian].

    Google Scholar 

  13. F. Cardarelli, Materials Handbook (Springer, London, 2008), Chaps. 3, 10.

    Google Scholar 

  14. V. G. Chuprina, Powder Metall. Met. Ceram. 31(7), 578 (1992).

    Google Scholar 

  15. V. G. Chuprina, Powder Metall. Met. Ceram. 31(8), 687 (1992).

    Google Scholar 

  16. A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, Materialovedenie, No. 5, 24 (2008).

  17. L. C. Davis and B. E. Artz, J. Appl. Phys. 77, 4954 (1995).

    Article  ADS  Google Scholar 

  18. V. B. Efimov and L. P. Mezhov-Deglin, Physica B (Amsterdam) 263–264, 745 (1999).

    Google Scholar 

  19. B. Feng, Z. Li, and X. Zhang, Thin Solid Films 517, 2803 (2009).

    Article  ADS  Google Scholar 

  20. M. Battabyal, O. Beffort, S. Kleiner, S. Vaucher, and L. Rohr, Diamond Relat. Mater. 17, 1438 (2008).

    Article  ADS  Google Scholar 

  21. E. T. Swartz and R. O. Pohl, Rev. Mod. Phys. 61, 605 (1989).

    Article  ADS  Google Scholar 

  22. R. Prasher, J. Appl. Phys. 100, 064302 (2006).

    Article  ADS  Google Scholar 

  23. D. P. Hasselman and L. F. Johnson, J. Compos. Mater. 21, 508 (1987).

    Article  Google Scholar 

  24. R. Tavangar, J. M. Molina, and L. Weber, Scr. Mater. 56, 357 (2007).

    Article  Google Scholar 

  25. K. Lichtenecker, Phys. Z. 10(25), 1005 (1909).

    Google Scholar 

  26. V. I. Loginov and V. G. Kucherov, J. Appl. Mech. Tech. Phys. 32, 413 (1991).

    Article  ADS  Google Scholar 

  27. A. M. Dykhne, Sov. Phys. JETP 32(1), 63 (1970).

    ADS  Google Scholar 

  28. Z. Hashin, J. Appl. Phys. 89, 2261 (2001).

    Article  ADS  Google Scholar 

  29. Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).

    Article  ADS  MATH  Google Scholar 

  30. A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, Phys. Solid State 53(1), 48 (2011).

    Article  ADS  Google Scholar 

  31. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, 1997), p. 340.

    Google Scholar 

  32. K. Chu, Z. Liu, C. Jia, H. Chen, X. Liang, W. Gao, W. Tian, and H. Guo, J. Alloys Compd. 490, 453 (2010).

    Article  Google Scholar 

  33. C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, J. Appl. Phys. 81, 6692 (1997).

    Article  ADS  Google Scholar 

  34. A. Yu. Klokov, D. F. Aminev, A. I. Sharkov, V. G. Ral’chenko, and T. I. Galkina, Phys. Solid State 50(12), 2263 (2008).

    Article  ADS  Google Scholar 

  35. R. J. Stoner and H. J. Maris, Phys. Rev. B: Condens. Matter. 48, 16373 (1993).

    Article  ADS  Google Scholar 

  36. C. B. Gundrum, D. G. Cahill, and R. S. Averback, Phys. Rev. B: Condens. Matter 72, 245426 (2005).

    Article  ADS  Google Scholar 

  37. W. Park, D. V. Baxter, S. Steenwyk, I. Moraru, W. P. Jr. Pratt, and J. Bass, Phys. Rev. B: Condens. Matter 62, 1178 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Abyzov.

Additional information

Original Russian Text © A.M. Abyzov, S.V. Kidalov, F.M. Shakhov, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 1, pp. 196–201.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abyzov, A.M., Kidalov, S.V. & Shakhov, F.M. Filler-matrix thermal boundary resistance of diamond-copper composite with high thermal conductivity. Phys. Solid State 54, 210–215 (2012). https://doi.org/10.1134/S1063783412010027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412010027

Keywords

  • Coating Thickness
  • Diamond Particle
  • Tungsten Coating
  • Thermal Boundary Resistance
  • Experimental Thermal Conductivity